{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.JoinSemilattice.Class.Ord where
import Control.Applicative (liftA2)
import Data.JoinSemilattice.Defined (Defined (..))
import Data.JoinSemilattice.Intersect (Intersect (..), Intersectable)
import qualified Data.JoinSemilattice.Intersect as Intersect
import Data.JoinSemilattice.Class.Boolean (BooleanR (..))
import Data.JoinSemilattice.Class.Eq (EqR (..), EqC')
import Data.Kind (Constraint, Type)
class (EqR f, forall x. OrdC f x => EqC' f x) => OrdR (f :: Type -> Type) where
type OrdC f :: Type -> Constraint
type OrdC f = EqC f
lteR :: OrdC f x => ( f x, f x, f Bool ) -> ( f x, f x, f Bool )
gtR :: (OrdR f, OrdC f x) => ( f x, f x, f Bool ) -> ( f x, f x, f Bool )
gtR :: (f x, f x, f Bool) -> (f x, f x, f Bool)
gtR ( f x
x, f x
y, f Bool
z ) = let ( f x
y', f x
x', f Bool
z' ) = (f x, f x, f Bool) -> (f x, f x, f Bool)
forall (f :: * -> *) x.
(OrdR f, OrdC f x) =>
(f x, f x, f Bool) -> (f x, f x, f Bool)
ltR ( f x
y, f x
x, f Bool
z ) in ( f x
x', f x
y', f Bool
z' )
gteR :: (OrdR f, OrdC f x) => ( f x, f x, f Bool ) -> ( f x, f x, f Bool )
gteR :: (f x, f x, f Bool) -> (f x, f x, f Bool)
gteR ( f x
x, f x
y, f Bool
z ) = let ( f x
y', f x
x', f Bool
z' ) = (f x, f x, f Bool) -> (f x, f x, f Bool)
forall (f :: * -> *) x.
(OrdR f, OrdC f x) =>
(f x, f x, f Bool) -> (f x, f x, f Bool)
lteR ( f x
y, f x
x, f Bool
z ) in ( f x
x', f x
y', f Bool
z' )
ltR :: (OrdR f, OrdC f x) => ( f x, f x, f Bool ) -> ( f x, f x, f Bool )
ltR :: (f x, f x, f Bool) -> (f x, f x, f Bool)
ltR ( f x
x, f x
y, f Bool
z )
= let ( f Bool
notZ', f Bool
_ ) = (f Bool, f Bool) -> (f Bool, f Bool)
forall (f :: * -> *).
BooleanR f =>
(f Bool, f Bool) -> (f Bool, f Bool)
notR ( f Bool
forall a. Monoid a => a
mempty, f Bool
z )
( f x
x', f x
y', f Bool
notZR ) = (f x, f x, f Bool) -> (f x, f x, f Bool)
forall (f :: * -> *) x.
(OrdR f, OrdC f x) =>
(f x, f x, f Bool) -> (f x, f x, f Bool)
gteR ( f x
x, f x
y, f Bool
notZ' )
( f Bool
_, f Bool
z' ) = (f Bool, f Bool) -> (f Bool, f Bool)
forall (f :: * -> *).
BooleanR f =>
(f Bool, f Bool) -> (f Bool, f Bool)
notR ( f Bool
notZR, f Bool
forall a. Monoid a => a
mempty )
in ( f x
x', f x
y', f Bool
z' )
instance OrdR Defined where
type OrdC Defined = Ord
lteR :: (Defined x, Defined x, Defined Bool)
-> (Defined x, Defined x, Defined Bool)
lteR ( Defined x
x, Defined x
y, Defined Bool
_ ) = ( Defined x
forall a. Monoid a => a
mempty, Defined x
forall a. Monoid a => a
mempty, (x -> x -> Bool) -> Defined x -> Defined x -> Defined Bool
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 x -> x -> Bool
forall a. Ord a => a -> a -> Bool
(<=) Defined x
x Defined x
y )
class (Ord x, Intersectable x) => OrdIntersectable (x :: Type)
instance (Ord x, Intersectable x) => OrdIntersectable x
instance OrdR Intersect where
type OrdC Intersect = OrdIntersectable
lteR :: (Intersect x, Intersect x, Intersect Bool)
-> (Intersect x, Intersect x, Intersect Bool)
lteR ( Intersect x
x, Intersect x
y, Intersect Bool
z )
= ( if | Intersect Bool
z Intersect Bool -> Intersect Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Intersect Bool
forall (f :: * -> *). BooleanR f => f Bool
trueR -> (x -> Bool) -> Intersect x -> Intersect x
forall x. (x -> Bool) -> Intersect x -> Intersect x
Intersect.filter (x -> x -> Bool
forall a. Ord a => a -> a -> Bool
<= Intersect x -> x
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum Intersect x
y) Intersect x
x
| Intersect Bool
z Intersect Bool -> Intersect Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Intersect Bool
forall (f :: * -> *). BooleanR f => f Bool
falseR -> (x -> Bool) -> Intersect x -> Intersect x
forall x. (x -> Bool) -> Intersect x -> Intersect x
Intersect.filter ( x -> x -> Bool
forall a. Ord a => a -> a -> Bool
> Intersect x -> x
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum Intersect x
y) Intersect x
x
| Bool
otherwise -> Intersect x
forall a. Monoid a => a
mempty
, if | Intersect Bool
z Intersect Bool -> Intersect Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Intersect Bool
forall (f :: * -> *). BooleanR f => f Bool
trueR -> (x -> Bool) -> Intersect x -> Intersect x
forall x. (x -> Bool) -> Intersect x -> Intersect x
Intersect.filter (x -> x -> Bool
forall a. Ord a => a -> a -> Bool
>= Intersect x -> x
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
minimum Intersect x
x) Intersect x
y
| Intersect Bool
z Intersect Bool -> Intersect Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Intersect Bool
forall (f :: * -> *). BooleanR f => f Bool
falseR -> (x -> Bool) -> Intersect x -> Intersect x
forall x. (x -> Bool) -> Intersect x -> Intersect x
Intersect.filter ( x -> x -> Bool
forall a. Ord a => a -> a -> Bool
< Intersect x -> x
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum Intersect x
x) Intersect x
y
| Bool
otherwise -> Intersect x
forall a. Monoid a => a
mempty
, (x -> x -> Bool) -> Intersect x -> Intersect x -> Intersect Bool
forall this that result.
(Intersectable this, Intersectable that, Intersectable result) =>
(this -> that -> result)
-> Intersect this -> Intersect that -> Intersect result
Intersect.lift2 x -> x -> Bool
forall a. Ord a => a -> a -> Bool
(<=) Intersect x
x Intersect x
y
)