module Sound.Sc3.Ugen.Graph.Transform where
import Data.Either
import Data.List
import qualified Sound.Sc3.Common.Rate as Rate
import qualified Sound.Sc3.Common.Uid as Uid
import Sound.Sc3.Ugen.Graph
constant_to_control :: Uid.Id -> U_Node -> (Uid.Id,U_Node)
constant_to_control :: Id -> U_Node -> (Id, U_Node)
constant_to_control Id
z U_Node
n =
case U_Node
n of
U_Node_C Id
_ Sample
k -> (Id
z forall a. Num a => a -> a -> a
+ Id
1,Id
-> Rate
-> Maybe Id
-> String
-> Sample
-> K_Type
-> Maybe (Control_Meta Sample)
-> U_Node
U_Node_K Id
z Rate
Rate.ControlRate forall a. Maybe a
Nothing (String
"k_" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show Id
z) Sample
k K_Type
Rate.K_ControlRate forall a. Maybe a
Nothing)
U_Node
_ -> (Id
z,U_Node
n)
c_lift_from_port :: U_Graph -> Uid.Id -> From_Port -> (Uid.Id,Either From_Port U_Node)
c_lift_from_port :: U_Graph -> Id -> From_Port -> (Id, Either From_Port U_Node)
c_lift_from_port U_Graph
g Id
z From_Port
fp =
case From_Port
fp of
From_Port_C Id
_ ->
let n :: U_Node
n = U_Graph -> From_Port -> U_Node
ug_from_port_node_err U_Graph
g From_Port
fp
(Id
z',U_Node
n') = Id -> U_Node -> (Id, U_Node)
constant_to_control Id
z U_Node
n
in (Id
z',forall a b. b -> Either a b
Right U_Node
n')
From_Port
_ -> (Id
z,forall a b. a -> Either a b
Left From_Port
fp)
c_lift_inputs :: U_Graph -> Uid.Id -> [From_Port] -> (Uid.Id,[From_Port],[U_Node])
c_lift_inputs :: U_Graph -> Id -> [From_Port] -> (Id, [From_Port], [U_Node])
c_lift_inputs U_Graph
g Id
z [From_Port]
i =
let (Id
z',[Either From_Port U_Node]
r) = forall (t :: * -> *) s a b.
Traversable t =>
(s -> a -> (s, b)) -> s -> t a -> (s, t b)
mapAccumL (U_Graph -> Id -> From_Port -> (Id, Either From_Port U_Node)
c_lift_from_port U_Graph
g) Id
z [From_Port]
i
f :: Either From_Port U_Node -> From_Port
f Either From_Port U_Node
e = case Either From_Port U_Node
e of
Left From_Port
fp -> From_Port
fp
Right U_Node
n -> U_Node -> From_Port
u_node_from_port U_Node
n
r' :: [From_Port]
r' = forall a b. (a -> b) -> [a] -> [b]
map Either From_Port U_Node -> From_Port
f [Either From_Port U_Node]
r
in (Id
z',[From_Port]
r',forall a b. [Either a b] -> [b]
rights [Either From_Port U_Node]
r)
c_lift_ugen :: U_Graph -> Uid.Id -> U_Node -> (Uid.Id,U_Node,[U_Node])
c_lift_ugen :: U_Graph -> Id -> U_Node -> (Id, U_Node, [U_Node])
c_lift_ugen U_Graph
g Id
z U_Node
n =
let i :: [From_Port]
i = U_Node -> [From_Port]
u_node_u_inputs U_Node
n
(Id
z',[From_Port]
i',[U_Node]
k) = U_Graph -> Id -> [From_Port] -> (Id, [From_Port], [U_Node])
c_lift_inputs U_Graph
g Id
z [From_Port]
i
in (Id
z',U_Node
n {u_node_u_inputs :: [From_Port]
u_node_u_inputs = [From_Port]
i'},[U_Node]
k)
c_lift_ugens :: U_Graph -> Uid.Id -> [U_Node] -> (Uid.Id,[U_Node],[U_Node])
c_lift_ugens :: U_Graph -> Id -> [U_Node] -> (Id, [U_Node], [U_Node])
c_lift_ugens U_Graph
g =
let recur :: ([U_Node], [U_Node]) -> Id -> [U_Node] -> (Id, [U_Node], [U_Node])
recur ([U_Node]
k,[U_Node]
r) Id
z [U_Node]
u =
case [U_Node]
u of
[] -> (Id
z,[U_Node]
k,forall a. [a] -> [a]
reverse [U_Node]
r)
U_Node
n:[U_Node]
u' -> let (Id
z',U_Node
n',[U_Node]
k') = U_Graph -> Id -> U_Node -> (Id, U_Node, [U_Node])
c_lift_ugen U_Graph
g Id
z U_Node
n
in ([U_Node], [U_Node]) -> Id -> [U_Node] -> (Id, [U_Node], [U_Node])
recur ([U_Node]
kforall a. [a] -> [a] -> [a]
++[U_Node]
k',U_Node
n'forall a. a -> [a] -> [a]
:[U_Node]
r) Id
z' [U_Node]
u'
in ([U_Node], [U_Node]) -> Id -> [U_Node] -> (Id, [U_Node], [U_Node])
recur ([],[])
lift_constants :: U_Graph -> U_Graph
lift_constants :: U_Graph -> U_Graph
lift_constants U_Graph
g =
let (U_Graph Id
z [U_Node]
_ [U_Node]
k [U_Node]
u) = U_Graph -> U_Graph
ug_remove_implicit U_Graph
g
(Id
z',[U_Node]
k',[U_Node]
u') = U_Graph -> Id -> [U_Node] -> (Id, [U_Node], [U_Node])
c_lift_ugens U_Graph
g Id
z [U_Node]
u
g' :: U_Graph
g' = Id -> [U_Node] -> [U_Node] -> [U_Node] -> U_Graph
U_Graph Id
z' [] (forall a. (a -> a -> Bool) -> [a] -> [a]
nubBy U_Node -> U_Node -> Bool
u_node_k_eq ([U_Node]
k forall a. [a] -> [a] -> [a]
++ [U_Node]
k')) [U_Node]
u'
in U_Graph -> U_Graph
ug_add_implicit U_Graph
g'