Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Interpolation functions, ie. for envelope segments. Present naming is for qualified import.
Synopsis
- type Interpolation_f t = t -> t -> t -> t
- interpolate :: (Num t, Ord t) => Interpolation_f t -> (t, t) -> t -> t
- step :: Interpolation_f t
- linear :: Num t => Interpolation_f t
- exponential :: Floating t => Interpolation_f t
- exponential_0 :: (Eq t, Floating t) => Interpolation_f t
- exponential_lin :: (Eq t, Floating t) => Interpolation_f t
- sine :: Floating t => Interpolation_f t
- welch :: (Ord t, Floating t) => Interpolation_f t
- curve :: (Ord t, Floating t) => t -> Interpolation_f t
- squared :: Floating t => Interpolation_f t
- cubed :: Floating t => Interpolation_f t
- hold :: (Num t, Ord t) => Interpolation_f t
- fader :: (Num t, Ord t) => Interpolation_f t
Documentation
type Interpolation_f t = t -> t -> t -> t Source #
An interpolation function takes three arguments. x0 is the left or begin value, x1 is the right or end value, t is a (0,1) index.
interpolate :: (Num t, Ord t) => Interpolation_f t -> (t, t) -> t -> t Source #
Clip x to (0,1) and run f.
>>>
interpolate linear (-1,1) 0.5
0.0
step :: Interpolation_f t Source #
Step function, ignores t and returns x1.
linear :: Num t => Interpolation_f t Source #
Linear interpolation funtion.
>>>
map (linear 1 10) [0,0.25 .. 1]
[1.0,3.25,5.5,7.75,10.0]
import Sound.Sc3.Plot {\- hsc3-plot -\} plot_fn_r1_ln (linear (-1) 1) (0,1)
exponential :: Floating t => Interpolation_f t Source #
Exponential interpolation. x0 must not be zero and (x0,x1) must not span zero.
plot_fn_r1_ln [exponential 0.001 1] (0,1) plot_fn_r1_ln [exponential 1 2] (0,1) plot_fn_r1_ln [exponential 20 20000] (0,1)
exponential_0 :: (Eq t, Floating t) => Interpolation_f t Source #
Variant that allows x0 to be zero, though (x0,x1) must not span zero.
plot_fn_r1_ln [exponential_0 0 1] (0,1) plot_fn_r1_ln [exponential_0 0 (-1)] (0,1)
exponential_lin :: (Eq t, Floating t) => Interpolation_f t Source #
linear
of exponential_0
of (0,1), ie. allows (x0,x1) to span zero.
plot_fn_r1_ln [exponential_lin (-1) 1] (0,1)
sine :: Floating t => Interpolation_f t Source #
linear
with t transformed by sine function over (-pi2,pi2).
plot_fn_r1_ln [sine (-1) 1] (0,1) plot_fn_r1_ln [sine 1 (-1)] (0,1)
welch :: (Ord t, Floating t) => Interpolation_f t Source #
If x0 <
x1 rising sine segment (0,pi2), else falling segment (pi2,pi).
plot_fn_r1_ln [welch (-1) 1] (0,1) plot_fn_r1_ln [welch 1 (-1)] (0,1)
curve :: (Ord t, Floating t) => t -> Interpolation_f t Source #
Curvature controlled by single parameter c.
Zero is linear
, increasing c approaches exponential
and continues past it.
The value for c at which the curve is close to exponential depends on the range.
plot_p1_ln (map (\c-> map (curve c (-1) 1) [0,0.01 .. 1]) [-6,-4 .. 6]) plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [curve 4.4 1 100,exponential 1 100,curve 4.5 1 100]) plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [exponential 20 20000,curve 7 20 20000]) plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [fader 0 2,curve 2 0 2])
squared :: Floating t => Interpolation_f t Source #
cubed :: Floating t => Interpolation_f t Source #
Cubic variant of squared
.
plot_fn_r1_ln [cubed 0 1] (0,1) plot_p1_ln (map (\f -> map f [0,0.01 .. 1]) [curve 3.25 0 1,cubed 0 1])