{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE RankNTypes #-}
#if MIN_VERSION_base(4,6,0) && !MIN_VERSION_base(4,7,0)
{-# OPTIONS_GHC -fno-warn-deprecations #-}
#endif
module Test.Hspec.Core.Runner.Eval (
EvalConfig(..)
, EvalTree
, Tree(..)
, EvalItem(..)
, runFormatter
#ifdef TEST
, mergeResults
, runSequentially
#endif
) where
import Prelude ()
import Test.Hspec.Core.Compat hiding (Monad)
import qualified Test.Hspec.Core.Compat as M
import Control.Concurrent
import Control.Concurrent.Async hiding (cancel)
import Control.Monad.IO.Class (liftIO)
import qualified Control.Monad.IO.Class as M
import Control.Monad.Trans.Reader
import Control.Monad.Trans.Class
import Test.Hspec.Core.Util
import Test.Hspec.Core.Spec (Progress, FailureReason(..), Result(..), ResultStatus(..), ProgressCallback)
import Test.Hspec.Core.Timer
import Test.Hspec.Core.Format (Format)
import qualified Test.Hspec.Core.Format as Format
import Test.Hspec.Core.Clock
import Test.Hspec.Core.Example.Location
import Test.Hspec.Core.Example (safeEvaluateResultStatus)
import qualified NonEmpty
import NonEmpty (NonEmpty(..))
data Tree c a =
Node String (NonEmpty (Tree c a))
| NodeWithCleanup (Maybe (String, Location)) c (NonEmpty (Tree c a))
| Leaf a
deriving (Tree c a -> Tree c a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall c a. (Eq c, Eq a) => Tree c a -> Tree c a -> Bool
/= :: Tree c a -> Tree c a -> Bool
$c/= :: forall c a. (Eq c, Eq a) => Tree c a -> Tree c a -> Bool
== :: Tree c a -> Tree c a -> Bool
$c== :: forall c a. (Eq c, Eq a) => Tree c a -> Tree c a -> Bool
Eq, Int -> Tree c a -> ShowS
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall c a. (Show c, Show a) => Int -> Tree c a -> ShowS
forall c a. (Show c, Show a) => [Tree c a] -> ShowS
forall c a. (Show c, Show a) => Tree c a -> String
showList :: [Tree c a] -> ShowS
$cshowList :: forall c a. (Show c, Show a) => [Tree c a] -> ShowS
show :: Tree c a -> String
$cshow :: forall c a. (Show c, Show a) => Tree c a -> String
showsPrec :: Int -> Tree c a -> ShowS
$cshowsPrec :: forall c a. (Show c, Show a) => Int -> Tree c a -> ShowS
Show, forall a b. a -> Tree c b -> Tree c a
forall a b. (a -> b) -> Tree c a -> Tree c b
forall c a b. a -> Tree c b -> Tree c a
forall c a b. (a -> b) -> Tree c a -> Tree c b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Tree c b -> Tree c a
$c<$ :: forall c a b. a -> Tree c b -> Tree c a
fmap :: forall a b. (a -> b) -> Tree c a -> Tree c b
$cfmap :: forall c a b. (a -> b) -> Tree c a -> Tree c b
Functor, forall a. Tree c a -> Bool
forall c a. Eq a => a -> Tree c a -> Bool
forall c a. Num a => Tree c a -> a
forall c a. Ord a => Tree c a -> a
forall m a. Monoid m => (a -> m) -> Tree c a -> m
forall c m. Monoid m => Tree c m -> m
forall c a. Tree c a -> Bool
forall c a. Tree c a -> Int
forall c a. Tree c a -> [a]
forall a b. (a -> b -> b) -> b -> Tree c a -> b
forall c a. (a -> a -> a) -> Tree c a -> a
forall c m a. Monoid m => (a -> m) -> Tree c a -> m
forall c b a. (b -> a -> b) -> b -> Tree c a -> b
forall c a b. (a -> b -> b) -> b -> Tree c a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Tree c a -> a
$cproduct :: forall c a. Num a => Tree c a -> a
sum :: forall a. Num a => Tree c a -> a
$csum :: forall c a. Num a => Tree c a -> a
minimum :: forall a. Ord a => Tree c a -> a
$cminimum :: forall c a. Ord a => Tree c a -> a
maximum :: forall a. Ord a => Tree c a -> a
$cmaximum :: forall c a. Ord a => Tree c a -> a
elem :: forall a. Eq a => a -> Tree c a -> Bool
$celem :: forall c a. Eq a => a -> Tree c a -> Bool
length :: forall a. Tree c a -> Int
$clength :: forall c a. Tree c a -> Int
null :: forall a. Tree c a -> Bool
$cnull :: forall c a. Tree c a -> Bool
toList :: forall a. Tree c a -> [a]
$ctoList :: forall c a. Tree c a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Tree c a -> a
$cfoldl1 :: forall c a. (a -> a -> a) -> Tree c a -> a
foldr1 :: forall a. (a -> a -> a) -> Tree c a -> a
$cfoldr1 :: forall c a. (a -> a -> a) -> Tree c a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Tree c a -> b
$cfoldl' :: forall c b a. (b -> a -> b) -> b -> Tree c a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Tree c a -> b
$cfoldl :: forall c b a. (b -> a -> b) -> b -> Tree c a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Tree c a -> b
$cfoldr' :: forall c a b. (a -> b -> b) -> b -> Tree c a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Tree c a -> b
$cfoldr :: forall c a b. (a -> b -> b) -> b -> Tree c a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Tree c a -> m
$cfoldMap' :: forall c m a. Monoid m => (a -> m) -> Tree c a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Tree c a -> m
$cfoldMap :: forall c m a. Monoid m => (a -> m) -> Tree c a -> m
fold :: forall m. Monoid m => Tree c m -> m
$cfold :: forall c m. Monoid m => Tree c m -> m
Foldable, forall c. Functor (Tree c)
forall c. Foldable (Tree c)
forall c (m :: * -> *) a. Monad m => Tree c (m a) -> m (Tree c a)
forall c (f :: * -> *) a.
Applicative f =>
Tree c (f a) -> f (Tree c a)
forall c (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tree c a -> m (Tree c b)
forall c (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tree c a -> f (Tree c b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tree c a -> f (Tree c b)
sequence :: forall (m :: * -> *) a. Monad m => Tree c (m a) -> m (Tree c a)
$csequence :: forall c (m :: * -> *) a. Monad m => Tree c (m a) -> m (Tree c a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tree c a -> m (Tree c b)
$cmapM :: forall c (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tree c a -> m (Tree c b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Tree c (f a) -> f (Tree c a)
$csequenceA :: forall c (f :: * -> *) a.
Applicative f =>
Tree c (f a) -> f (Tree c a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tree c a -> f (Tree c b)
$ctraverse :: forall c (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tree c a -> f (Tree c b)
Traversable)
type Monad m = (Functor m, Applicative m, M.Monad m)
type MonadIO m = (Monad m, M.MonadIO m)
data EvalConfig = EvalConfig {
EvalConfig -> Format
evalConfigFormat :: Format
, EvalConfig -> Int
evalConfigConcurrentJobs :: Int
, EvalConfig -> Bool
evalConfigFailFast :: Bool
}
data Env = Env {
Env -> EvalConfig
envConfig :: EvalConfig
, Env -> IORef [(Path, Item)]
envResults :: IORef [(Path, Format.Item)]
}
formatEvent :: Format.Event -> EvalM ()
formatEvent :: Event -> EvalM ()
formatEvent Event
event = do
Format
format <- forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks forall a b. (a -> b) -> a -> b
$ EvalConfig -> Format
evalConfigFormat forall b c a. (b -> c) -> (a -> b) -> a -> c
. Env -> EvalConfig
envConfig
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ Format
format Event
event
type EvalM = ReaderT Env IO
addResult :: Path -> Format.Item -> EvalM ()
addResult :: Path -> Item -> EvalM ()
addResult Path
path Item
item = do
IORef [(Path, Item)]
ref <- forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks Env -> IORef [(Path, Item)]
envResults
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> (a -> a) -> IO ()
modifyIORef IORef [(Path, Item)]
ref ((Path
path, Item
item) forall a. a -> [a] -> [a]
:)
getResults :: EvalM [(Path, Format.Item)]
getResults :: EvalM [(Path, Item)]
getResults = forall a. [a] -> [a]
reverse forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks Env -> IORef [(Path, Item)]
envResults forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. IORef a -> IO a
readIORef)
reportItem :: Path -> Maybe Location -> EvalM (Seconds, Result) -> EvalM ()
reportItem :: Path -> Maybe Location -> EvalM (Seconds, Result) -> EvalM ()
reportItem Path
path Maybe Location
loc EvalM (Seconds, Result)
action = do
Path -> EvalM ()
reportItemStarted Path
path
EvalM (Seconds, Result)
action forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Path -> Maybe Location -> (Seconds, Result) -> EvalM ()
reportResult Path
path Maybe Location
loc
reportItemStarted :: Path -> EvalM ()
reportItemStarted :: Path -> EvalM ()
reportItemStarted = Event -> EvalM ()
formatEvent forall b c a. (b -> c) -> (a -> b) -> a -> c
. Path -> Event
Format.ItemStarted
reportItemDone :: Path -> Format.Item -> EvalM ()
reportItemDone :: Path -> Item -> EvalM ()
reportItemDone Path
path Item
item = do
Path -> Item -> EvalM ()
addResult Path
path Item
item
Event -> EvalM ()
formatEvent forall a b. (a -> b) -> a -> b
$ Path -> Item -> Event
Format.ItemDone Path
path Item
item
reportResult :: Path -> Maybe Location -> (Seconds, Result) -> EvalM ()
reportResult :: Path -> Maybe Location -> (Seconds, Result) -> EvalM ()
reportResult Path
path Maybe Location
loc (Seconds
duration, Result
result) = do
case Result
result of
Result String
info ResultStatus
status -> Path -> Item -> EvalM ()
reportItemDone Path
path forall a b. (a -> b) -> a -> b
$ Maybe Location -> Seconds -> String -> Result -> Item
Format.Item Maybe Location
loc Seconds
duration String
info forall a b. (a -> b) -> a -> b
$ case ResultStatus
status of
ResultStatus
Success -> Result
Format.Success
Pending Maybe Location
loc_ Maybe String
reason -> Maybe Location -> Maybe String -> Result
Format.Pending Maybe Location
loc_ Maybe String
reason
Failure Maybe Location
loc_ err :: FailureReason
err@(Error Maybe String
_ SomeException
e) -> Maybe Location -> FailureReason -> Result
Format.Failure (Maybe Location
loc_ forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> SomeException -> Maybe Location
extractLocation SomeException
e) FailureReason
err
Failure Maybe Location
loc_ FailureReason
err -> Maybe Location -> FailureReason -> Result
Format.Failure Maybe Location
loc_ FailureReason
err
groupStarted :: Path -> EvalM ()
groupStarted :: Path -> EvalM ()
groupStarted = Event -> EvalM ()
formatEvent forall b c a. (b -> c) -> (a -> b) -> a -> c
. Path -> Event
Format.GroupStarted
groupDone :: Path -> EvalM ()
groupDone :: Path -> EvalM ()
groupDone = Event -> EvalM ()
formatEvent forall b c a. (b -> c) -> (a -> b) -> a -> c
. Path -> Event
Format.GroupDone
data EvalItem = EvalItem {
EvalItem -> String
evalItemDescription :: String
, EvalItem -> Maybe Location
evalItemLocation :: Maybe Location
, EvalItem -> Bool
evalItemParallelize :: Bool
, EvalItem -> ProgressCallback -> IO Result
evalItemAction :: ProgressCallback -> IO Result
}
type EvalTree = Tree (IO ()) EvalItem
runFormatter :: EvalConfig -> [EvalTree] -> IO ([(Path, Format.Item)])
runFormatter :: EvalConfig -> [EvalTree] -> IO [(Path, Item)]
runFormatter EvalConfig
config [EvalTree]
specs = do
IORef [(Path, Item)]
ref <- forall a. a -> IO (IORef a)
newIORef []
let
start :: IO [RunningTree_ IO]
start = forall (m :: * -> *).
MonadIO m =>
Int -> [EvalTree] -> IO [RunningTree_ m]
parallelizeTree (EvalConfig -> Int
evalConfigConcurrentJobs EvalConfig
config) [EvalTree]
specs
cancel :: [Tree (IO ()) (Async a, b)] -> IO ()
cancel = forall a. [Async a] -> IO ()
cancelMany forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap forall (t :: * -> *) a. Foldable t => t a -> [a]
toList forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst)
forall a b c. IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket IO [RunningTree_ IO]
start forall {a} {b}. [Tree (IO ()) (Async a, b)] -> IO ()
cancel forall a b. (a -> b) -> a -> b
$ \ [RunningTree_ IO]
runningSpecs -> do
forall a. Seconds -> (IO Bool -> IO a) -> IO a
withTimer Seconds
0.05 forall a b. (a -> b) -> a -> b
$ \ IO Bool
timer -> do
Format
format Event
Format.Started
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT ([RunningTree ()] -> EvalM ()
run forall b c a. (b -> c) -> (a -> b) -> a -> c
. [RunningTree (IO ())] -> [RunningTree ()]
applyCleanup forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO Bool -> Path -> ProgressCallback
reportProgress IO Bool
timer) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd)) [RunningTree_ IO]
runningSpecs) (EvalConfig -> IORef [(Path, Item)] -> Env
Env EvalConfig
config IORef [(Path, Item)]
ref) forall a b. IO a -> IO b -> IO a
`finally` do
[(Path, Item)]
results <- forall a. [a] -> [a]
reverse forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. IORef a -> IO a
readIORef IORef [(Path, Item)]
ref
Format
format ([(Path, Item)] -> Event
Format.Done [(Path, Item)]
results)
[(Path, Item)]
results <- forall a. [a] -> [a]
reverse forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. IORef a -> IO a
readIORef IORef [(Path, Item)]
ref
forall (m :: * -> *) a. Monad m => a -> m a
return [(Path, Item)]
results
where
format :: Format
format = EvalConfig -> Format
evalConfigFormat EvalConfig
config
reportProgress :: IO Bool -> Path -> ProgressCallback
reportProgress IO Bool
timer Path
path Progress
progress = do
Bool
r <- IO Bool
timer
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
r forall a b. (a -> b) -> a -> b
$ do
Format
format (Path -> Progress -> Event
Format.Progress Path
path Progress
progress)
cancelMany :: [Async a] -> IO ()
cancelMany :: forall a. [Async a] -> IO ()
cancelMany [Async a]
asyncs = do
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (ThreadId -> IO ()
killThread forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Async a -> ThreadId
asyncThreadId) [Async a]
asyncs
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ forall a. Async a -> IO (Either SomeException a)
waitCatch [Async a]
asyncs
data Item a = Item {
forall a. Item a -> String
_itemDescription :: String
, forall a. Item a -> Maybe Location
_itemLocation :: Maybe Location
, forall a. Item a -> a
itemAction :: a
} deriving forall a b. a -> Item b -> Item a
forall a b. (a -> b) -> Item a -> Item b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Item b -> Item a
$c<$ :: forall a b. a -> Item b -> Item a
fmap :: forall a b. (a -> b) -> Item a -> Item b
$cfmap :: forall a b. (a -> b) -> Item a -> Item b
Functor
type Job m progress a = (progress -> m ()) -> m a
type RunningItem = Item (Path -> IO (Seconds, Result))
type RunningTree c = Tree c RunningItem
applyCleanup :: [RunningTree (IO ())] -> [RunningTree ()]
applyCleanup :: [RunningTree (IO ())] -> [RunningTree ()]
applyCleanup = forall a b. (a -> b) -> [a] -> [b]
map RunningTree (IO ()) -> RunningTree ()
go
where
go :: RunningTree (IO ()) -> RunningTree ()
go RunningTree (IO ())
t = case RunningTree (IO ())
t of
Node String
label NonEmpty (RunningTree (IO ()))
xs -> forall c a. String -> NonEmpty (Tree c a) -> Tree c a
Node String
label (RunningTree (IO ()) -> RunningTree ()
go forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty (RunningTree (IO ()))
xs)
NodeWithCleanup Maybe (String, Location)
loc IO ()
cleanup NonEmpty (RunningTree (IO ()))
xs -> forall c a.
Maybe (String, Location) -> c -> NonEmpty (Tree c a) -> Tree c a
NodeWithCleanup Maybe (String, Location)
loc () (Maybe (String, Location)
-> IO () -> NonEmpty (RunningTree ()) -> NonEmpty (RunningTree ())
addCleanupToLastLeaf Maybe (String, Location)
loc IO ()
cleanup forall a b. (a -> b) -> a -> b
$ RunningTree (IO ()) -> RunningTree ()
go forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NonEmpty (RunningTree (IO ()))
xs)
Leaf RunningItem
a -> forall c a. a -> Tree c a
Leaf RunningItem
a
addCleanupToLastLeaf :: Maybe (String, Location) -> IO () -> NonEmpty (RunningTree ()) -> NonEmpty (RunningTree ())
addCleanupToLastLeaf :: Maybe (String, Location)
-> IO () -> NonEmpty (RunningTree ()) -> NonEmpty (RunningTree ())
addCleanupToLastLeaf Maybe (String, Location)
loc IO ()
cleanup = NonEmpty (RunningTree ()) -> NonEmpty (RunningTree ())
go
where
go :: NonEmpty (RunningTree ()) -> NonEmpty (RunningTree ())
go = forall a. NonEmpty a -> NonEmpty a
NonEmpty.reverse forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> a) -> NonEmpty a -> NonEmpty a
mapHead RunningTree () -> RunningTree ()
goNode forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. NonEmpty a -> NonEmpty a
NonEmpty.reverse
goNode :: RunningTree () -> RunningTree ()
goNode RunningTree ()
node = case RunningTree ()
node of
Node String
description NonEmpty (RunningTree ())
xs -> forall c a. String -> NonEmpty (Tree c a) -> Tree c a
Node String
description (NonEmpty (RunningTree ()) -> NonEmpty (RunningTree ())
go NonEmpty (RunningTree ())
xs)
NodeWithCleanup Maybe (String, Location)
loc_ () NonEmpty (RunningTree ())
xs -> forall c a.
Maybe (String, Location) -> c -> NonEmpty (Tree c a) -> Tree c a
NodeWithCleanup Maybe (String, Location)
loc_ () (NonEmpty (RunningTree ()) -> NonEmpty (RunningTree ())
go NonEmpty (RunningTree ())
xs)
Leaf RunningItem
item -> forall c a. a -> Tree c a
Leaf (Maybe (String, Location) -> IO () -> RunningItem -> RunningItem
addCleanupToItem Maybe (String, Location)
loc IO ()
cleanup RunningItem
item)
mapHead :: (a -> a) -> NonEmpty a -> NonEmpty a
mapHead :: forall a. (a -> a) -> NonEmpty a -> NonEmpty a
mapHead a -> a
f NonEmpty a
xs = case NonEmpty a
xs of
a
y :| [a]
ys -> a -> a
f a
y forall a. a -> [a] -> NonEmpty a
:| [a]
ys
addCleanupToItem :: Maybe (String, Location) -> IO () -> RunningItem -> RunningItem
addCleanupToItem :: Maybe (String, Location) -> IO () -> RunningItem -> RunningItem
addCleanupToItem Maybe (String, Location)
loc IO ()
cleanup RunningItem
item = RunningItem
item {
itemAction :: Path -> IO (Seconds, Result)
itemAction = \ Path
path -> do
(Seconds
t1, Result
r1) <- forall a. Item a -> a
itemAction RunningItem
item Path
path
(Seconds
t2, ResultStatus
r2) <- forall a. IO a -> IO (Seconds, a)
measure forall a b. (a -> b) -> a -> b
$ IO ResultStatus -> IO ResultStatus
safeEvaluateResultStatus (IO ()
cleanup forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return ResultStatus
Success)
let t :: Seconds
t = Seconds
t1 forall a. Num a => a -> a -> a
+ Seconds
t2
forall (m :: * -> *) a. Monad m => a -> m a
return (Seconds
t, Maybe (String, Location) -> Result -> ResultStatus -> Result
mergeResults Maybe (String, Location)
loc Result
r1 ResultStatus
r2)
}
mergeResults :: Maybe (String, Location) -> Result -> ResultStatus -> Result
mergeResults :: Maybe (String, Location) -> Result -> ResultStatus -> Result
mergeResults Maybe (String, Location)
mCallSite (Result String
info ResultStatus
r1) ResultStatus
r2 = String -> ResultStatus -> Result
Result String
info forall a b. (a -> b) -> a -> b
$ case (ResultStatus
r1, ResultStatus
r2) of
(ResultStatus
_, ResultStatus
Success) -> ResultStatus
r1
(Failure{}, ResultStatus
_) -> ResultStatus
r1
(Pending{}, Pending{}) -> ResultStatus
r1
(ResultStatus
Success, Pending{}) -> ResultStatus
r2
(ResultStatus
_, Failure Maybe Location
mLoc FailureReason
err) -> Maybe Location -> FailureReason -> ResultStatus
Failure (Maybe Location
mLoc forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Maybe Location
hookLoc) forall a b. (a -> b) -> a -> b
$ case FailureReason
err of
Error Maybe String
message SomeException
e -> Maybe String -> SomeException -> FailureReason
Error (Maybe String
message forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Maybe String
hookFailed) SomeException
e
FailureReason
_ -> FailureReason
err
where
hookLoc :: Maybe Location
hookLoc = forall a b. (a, b) -> b
snd forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (String, Location)
mCallSite
hookFailed :: Maybe String
hookFailed = case Maybe (String, Location)
mCallSite of
Just (String
name, Location
_) -> forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ String
"in " forall a. [a] -> [a] -> [a]
++ String
name forall a. [a] -> [a] -> [a]
++ String
"-hook:"
Maybe (String, Location)
Nothing -> forall a. Maybe a
Nothing
type RunningItem_ m = (Async (), Item (Job m Progress (Seconds, Result)))
type RunningTree_ m = Tree (IO ()) (RunningItem_ m)
data Semaphore = Semaphore {
Semaphore -> IO ()
semaphoreWait :: IO ()
, Semaphore -> IO ()
semaphoreSignal :: IO ()
}
parallelizeTree :: MonadIO m => Int -> [EvalTree] -> IO [RunningTree_ m]
parallelizeTree :: forall (m :: * -> *).
MonadIO m =>
Int -> [EvalTree] -> IO [RunningTree_ m]
parallelizeTree Int
n [EvalTree]
specs = do
QSem
sem <- Int -> IO QSem
newQSem Int
n
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
MonadIO m =>
QSem -> EvalItem -> IO (RunningItem_ m)
parallelizeItem QSem
sem) [EvalTree]
specs
parallelizeItem :: MonadIO m => QSem -> EvalItem -> IO (RunningItem_ m)
parallelizeItem :: forall (m :: * -> *).
MonadIO m =>
QSem -> EvalItem -> IO (RunningItem_ m)
parallelizeItem QSem
sem EvalItem{Bool
String
Maybe Location
ProgressCallback -> IO Result
evalItemAction :: ProgressCallback -> IO Result
evalItemParallelize :: Bool
evalItemLocation :: Maybe Location
evalItemDescription :: String
evalItemAction :: EvalItem -> ProgressCallback -> IO Result
evalItemParallelize :: EvalItem -> Bool
evalItemLocation :: EvalItem -> Maybe Location
evalItemDescription :: EvalItem -> String
..} = do
(Async ()
asyncAction, Job m Progress (Seconds, Result)
evalAction) <- forall (m :: * -> *) progress a.
MonadIO m =>
Semaphore
-> Bool
-> Job IO progress a
-> IO (Async (), Job m progress (Seconds, a))
parallelize (IO () -> IO () -> Semaphore
Semaphore (QSem -> IO ()
waitQSem QSem
sem) (QSem -> IO ()
signalQSem QSem
sem)) Bool
evalItemParallelize (forall a. IO a -> IO a
interruptible forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressCallback -> IO Result
evalItemAction)
forall (m :: * -> *) a. Monad m => a -> m a
return (Async ()
asyncAction, forall a. String -> Maybe Location -> a -> Item a
Item String
evalItemDescription Maybe Location
evalItemLocation Job m Progress (Seconds, Result)
evalAction)
parallelize :: MonadIO m => Semaphore -> Bool -> Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
parallelize :: forall (m :: * -> *) progress a.
MonadIO m =>
Semaphore
-> Bool
-> Job IO progress a
-> IO (Async (), Job m progress (Seconds, a))
parallelize Semaphore
sem Bool
isParallelizable
| Bool
isParallelizable = forall (m :: * -> *) progress a.
MonadIO m =>
Semaphore
-> Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
runParallel Semaphore
sem
| Bool
otherwise = forall (m :: * -> *) progress a.
MonadIO m =>
Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
runSequentially
runSequentially :: MonadIO m => Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
runSequentially :: forall (m :: * -> *) progress a.
MonadIO m =>
Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
runSequentially Job IO progress a
action = do
MVar ()
mvar <- forall a. IO (MVar a)
newEmptyMVar
(Async ()
asyncAction, Job m progress (Seconds, a)
evalAction) <- forall (m :: * -> *) progress a.
MonadIO m =>
Semaphore
-> Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
runParallel (IO () -> IO () -> Semaphore
Semaphore (forall a. MVar a -> IO a
takeMVar MVar ()
mvar) forall (m :: * -> *). Applicative m => m ()
pass) Job IO progress a
action
forall (m :: * -> *) a. Monad m => a -> m a
return (Async ()
asyncAction, \ progress -> m ()
notifyPartial -> forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (forall a. MVar a -> a -> IO ()
putMVar MVar ()
mvar ()) forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Job m progress (Seconds, a)
evalAction progress -> m ()
notifyPartial)
data Parallel progress a = Partial progress | Return a
runParallel :: forall m progress a. MonadIO m => Semaphore -> Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
runParallel :: forall (m :: * -> *) progress a.
MonadIO m =>
Semaphore
-> Job IO progress a -> IO (Async (), Job m progress (Seconds, a))
runParallel Semaphore{IO ()
semaphoreSignal :: IO ()
semaphoreWait :: IO ()
semaphoreSignal :: Semaphore -> IO ()
semaphoreWait :: Semaphore -> IO ()
..} Job IO progress a
action = do
MVar (Parallel progress (Seconds, a))
mvar <- forall a. IO (MVar a)
newEmptyMVar
Async ()
asyncAction <- forall a. IO a -> IO (Async a)
async forall a b. (a -> b) -> a -> b
$ forall a b c. IO a -> IO b -> IO c -> IO c
bracket_ IO ()
semaphoreWait IO ()
semaphoreSignal (MVar (Parallel progress (Seconds, a)) -> IO ()
worker MVar (Parallel progress (Seconds, a))
mvar)
forall (m :: * -> *) a. Monad m => a -> m a
return (Async ()
asyncAction, MVar (Parallel progress (Seconds, a))
-> Job m progress (Seconds, a)
eval MVar (Parallel progress (Seconds, a))
mvar)
where
worker :: MVar (Parallel progress (Seconds, a)) -> IO ()
worker :: MVar (Parallel progress (Seconds, a)) -> IO ()
worker MVar (Parallel progress (Seconds, a))
mvar = do
let partialCallback :: progress -> IO ()
partialCallback = forall a. MVar a -> a -> IO ()
replaceMVar MVar (Parallel progress (Seconds, a))
mvar forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall progress a. progress -> Parallel progress a
Partial
(Seconds, a)
result <- forall a. IO a -> IO (Seconds, a)
measure forall a b. (a -> b) -> a -> b
$ Job IO progress a
action progress -> IO ()
partialCallback
forall a. MVar a -> a -> IO ()
replaceMVar MVar (Parallel progress (Seconds, a))
mvar (forall progress a. a -> Parallel progress a
Return (Seconds, a)
result)
eval :: MVar (Parallel progress (Seconds, a)) -> (progress -> m ()) -> m (Seconds, a)
eval :: MVar (Parallel progress (Seconds, a))
-> Job m progress (Seconds, a)
eval MVar (Parallel progress (Seconds, a))
mvar progress -> m ()
notifyPartial = do
Parallel progress (Seconds, a)
r <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (forall a. MVar a -> IO a
takeMVar MVar (Parallel progress (Seconds, a))
mvar)
case Parallel progress (Seconds, a)
r of
Partial progress
p -> do
progress -> m ()
notifyPartial progress
p
MVar (Parallel progress (Seconds, a))
-> Job m progress (Seconds, a)
eval MVar (Parallel progress (Seconds, a))
mvar progress -> m ()
notifyPartial
Return (Seconds, a)
result -> forall (m :: * -> *) a. Monad m => a -> m a
return (Seconds, a)
result
replaceMVar :: MVar a -> a -> IO ()
replaceMVar :: forall a. MVar a -> a -> IO ()
replaceMVar MVar a
mvar a
p = forall a. MVar a -> IO (Maybe a)
tryTakeMVar MVar a
mvar forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall a. MVar a -> a -> IO ()
putMVar MVar a
mvar a
p
run :: [RunningTree ()] -> EvalM ()
run :: [RunningTree ()] -> EvalM ()
run [RunningTree ()]
specs = do
Bool
failFast <- forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks (EvalConfig -> Bool
evalConfigFailFast forall b c a. (b -> c) -> (a -> b) -> a -> c
. Env -> EvalConfig
envConfig)
Bool -> [EvalM ()] -> EvalM ()
sequenceActions Bool
failFast (forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap RunningTree () -> [EvalM ()]
foldSpec [RunningTree ()]
specs)
where
foldSpec :: RunningTree () -> [EvalM ()]
foldSpec :: RunningTree () -> [EvalM ()]
foldSpec = forall c a r. FoldTree c a r -> Tree c a -> [r]
foldTree FoldTree {
onGroupStarted :: Path -> EvalM ()
onGroupStarted = Path -> EvalM ()
groupStarted
, onGroupDone :: Path -> EvalM ()
onGroupDone = Path -> EvalM ()
groupDone
, onCleanup :: Maybe (String, Location) -> [String] -> () -> EvalM ()
onCleanup = Maybe (String, Location) -> [String] -> () -> EvalM ()
runCleanup
, onLeafe :: [String] -> RunningItem -> EvalM ()
onLeafe = [String] -> RunningItem -> EvalM ()
evalItem
}
runCleanup :: Maybe (String, Location) -> [String] -> () -> EvalM ()
runCleanup :: Maybe (String, Location) -> [String] -> () -> EvalM ()
runCleanup Maybe (String, Location)
_loc [String]
_groups = forall (m :: * -> *) a. Monad m => a -> m a
return
evalItem :: [String] -> RunningItem -> EvalM ()
evalItem :: [String] -> RunningItem -> EvalM ()
evalItem [String]
groups (Item String
requirement Maybe Location
loc Path -> IO (Seconds, Result)
action) = do
Path -> Maybe Location -> EvalM (Seconds, Result) -> EvalM ()
reportItem Path
path Maybe Location
loc forall a b. (a -> b) -> a -> b
$ forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Path -> IO (Seconds, Result)
action Path
path)
where
path :: Path
path :: Path
path = ([String]
groups, String
requirement)
data FoldTree c a r = FoldTree {
forall c a r. FoldTree c a r -> Path -> r
onGroupStarted :: Path -> r
, forall c a r. FoldTree c a r -> Path -> r
onGroupDone :: Path -> r
, forall c a r.
FoldTree c a r -> Maybe (String, Location) -> [String] -> c -> r
onCleanup :: Maybe (String, Location) -> [String] -> c -> r
, forall c a r. FoldTree c a r -> [String] -> a -> r
onLeafe :: [String] -> a -> r
}
foldTree :: FoldTree c a r -> Tree c a -> [r]
foldTree :: forall c a r. FoldTree c a r -> Tree c a -> [r]
foldTree FoldTree{[String] -> a -> r
Maybe (String, Location) -> [String] -> c -> r
Path -> r
onLeafe :: [String] -> a -> r
onCleanup :: Maybe (String, Location) -> [String] -> c -> r
onGroupDone :: Path -> r
onGroupStarted :: Path -> r
onLeafe :: forall c a r. FoldTree c a r -> [String] -> a -> r
onCleanup :: forall c a r.
FoldTree c a r -> Maybe (String, Location) -> [String] -> c -> r
onGroupDone :: forall c a r. FoldTree c a r -> Path -> r
onGroupStarted :: forall c a r. FoldTree c a r -> Path -> r
..} = [String] -> Tree c a -> [r]
go []
where
go :: [String] -> Tree c a -> [r]
go [String]
rGroups (Node String
group NonEmpty (Tree c a)
xs) = r
start forall a. a -> [a] -> [a]
: [r]
children forall a. [a] -> [a] -> [a]
++ [r
done]
where
path :: Path
path = (forall a. [a] -> [a]
reverse [String]
rGroups, String
group)
start :: r
start = Path -> r
onGroupStarted Path
path
children :: [r]
children = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap ([String] -> Tree c a -> [r]
go (String
group forall a. a -> [a] -> [a]
: [String]
rGroups)) NonEmpty (Tree c a)
xs
done :: r
done = Path -> r
onGroupDone Path
path
go [String]
rGroups (NodeWithCleanup Maybe (String, Location)
loc c
action NonEmpty (Tree c a)
xs) = [r]
children forall a. [a] -> [a] -> [a]
++ [r
cleanup]
where
children :: [r]
children = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap ([String] -> Tree c a -> [r]
go [String]
rGroups) NonEmpty (Tree c a)
xs
cleanup :: r
cleanup = Maybe (String, Location) -> [String] -> c -> r
onCleanup Maybe (String, Location)
loc (forall a. [a] -> [a]
reverse [String]
rGroups) c
action
go [String]
rGroups (Leaf a
a) = [[String] -> a -> r
onLeafe (forall a. [a] -> [a]
reverse [String]
rGroups) a
a]
sequenceActions :: Bool -> [EvalM ()] -> EvalM ()
sequenceActions :: Bool -> [EvalM ()] -> EvalM ()
sequenceActions Bool
failFast = [EvalM ()] -> EvalM ()
go
where
go :: [EvalM ()] -> EvalM ()
go :: [EvalM ()] -> EvalM ()
go [] = forall (m :: * -> *). Applicative m => m ()
pass
go (EvalM ()
action : [EvalM ()]
actions) = do
EvalM ()
action
Bool
stopNow <- case Bool
failFast of
Bool
False -> forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Bool
True -> forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (Path, Item) -> Bool
itemIsFailure forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> EvalM [(Path, Item)]
getResults
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
stopNow ([EvalM ()] -> EvalM ()
go [EvalM ()]
actions)
itemIsFailure :: (Path, Format.Item) -> Bool
itemIsFailure :: (Path, Item) -> Bool
itemIsFailure = Result -> Bool
isFailure forall b c a. (b -> c) -> (a -> b) -> a -> c
. Item -> Result
Format.itemResult forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd
where
isFailure :: Result -> Bool
isFailure Result
r = case Result
r of
Format.Success{} -> Bool
False
Format.Pending{} -> Bool
False
Format.Failure{} -> Bool
True