{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
#if __GLASGOW_HASKELL__ >= 710
{-# LANGUAGE AutoDeriveTypeable #-}
#endif
module HaskellWorks.Data.FingerTree
( FingerTree(..)
, Digit(..)
, Node(..)
, deep
, node2
, node3
, Measured(..)
, empty
, singleton
, append
, fromList
, null
, ViewL(..)
, ViewR(..)
, viewl
, viewr
, split
, takeUntil
, dropUntil
, reverse
, fmap'
, fmapWithPos
, unsafeFmap
, traverse'
, traverseWithPos
, unsafeTraverse
, (><)
, (<|)
, (|>)
) where
import Control.Applicative (Applicative (pure, (<*>)), (<$>))
import Control.DeepSeq
import Data.Foldable (Foldable (foldMap), toList)
import GHC.Generics (Generic)
import HaskellWorks.Data.Container
import HaskellWorks.Data.Cons
import HaskellWorks.Data.Snoc
import HaskellWorks.Data.Ops
import Prelude hiding (null, reverse)
import qualified Data.Semigroup as S
infixr 5 :<
infixl 5 :>
data ViewL s a
= EmptyL
| a :< s a
deriving (Eq, Ord, Show, Read, Generic, NFData)
data ViewR s a
= EmptyR
| s a :> a
deriving (Eq, Ord, Show, Read, Generic, NFData)
instance Functor s => Functor (ViewL s) where
fmap _ EmptyL = EmptyL
fmap f (x :< xs) = f x :< fmap f xs
instance Functor s => Functor (ViewR s) where
fmap _ EmptyR = EmptyR
fmap f (xs :> x) = fmap f xs :> f x
instance Measured v a => S.Semigroup (FingerTree v a) where
(<>) = append
{-# INLINE (<>) #-}
instance Measured v a => Monoid (FingerTree v a) where
mempty = empty
{-# INLINE mempty #-}
mappend = append
{-# INLINE mappend #-}
instance Container (FingerTree v a) where
type Elem (FingerTree v a) = a
data Digit a
= One a
| Two a a
| Three a a a
| Four a a a a
deriving (Show, Generic, NFData, Functor)
instance Foldable Digit where
foldMap f (One a) = f a
foldMap f (Two a b) = f a `mappend` f b
foldMap f (Three a b c) = f a `mappend` f b `mappend` f c
foldMap f (Four a b c d) = f a `mappend` f b `mappend` f c `mappend` f d
class (Monoid v) => Measured v a | a -> v where
measure :: a -> v
instance (Measured v a) => Measured v (Digit a) where
measure = foldMap measure
data Node v a = Node2 !v a a | Node3 !v a a a
deriving (Show, Generic, NFData)
instance Foldable (Node v) where
foldMap f (Node2 _ a b) = f a `mappend` f b
foldMap f (Node3 _ a b c) = f a `mappend` f b `mappend` f c
node2 :: (Measured v a) => a -> a -> Node v a
node2 a b = Node2 (measure a `mappend` measure b) a b
node3 :: (Measured v a) => a -> a -> a -> Node v a
node3 a b c = Node3 (measure a `mappend` measure b `mappend` measure c) a b c
instance (Monoid v) => Measured v (Node v a) where
measure (Node2 v _ _) = v
measure (Node3 v _ _ _) = v
nodeToDigit :: Node v a -> Digit a
nodeToDigit (Node2 _ a b) = Two a b
nodeToDigit (Node3 _ a b c) = Three a b c
data FingerTree v a
= Empty
| Single a
| Deep !v !(Digit a) (FingerTree v (Node v a)) !(Digit a)
deriving (Generic, NFData)
deep :: (Measured v a) => Digit a -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deep pr m sf = Deep ((measure pr `mappendVal` m) `mappend` measure sf) pr m sf
instance (Measured v a) => Measured v (FingerTree v a) where
measure Empty = mempty
measure (Single x) = measure x
measure (Deep v _ _ _) = v
instance Foldable (FingerTree v) where
foldMap _ Empty = mempty
foldMap f (Single x) = f x
foldMap f (Deep _ pr m sf) = foldMap f pr `mappend` foldMap (foldMap f) m `mappend` foldMap f sf
instance Eq a => Eq (FingerTree v a) where
xs == ys = toList xs == toList ys
instance Ord a => Ord (FingerTree v a) where
compare xs ys = compare (toList xs) (toList ys)
instance Show a => Show (FingerTree v a) where
showsPrec p xs = showParen (p > 10) $ showString "fromList " . shows (toList xs)
fmap' :: (Measured v1 a1, Measured v2 a2) => (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
fmap' = mapTree
mapTree :: (Measured v2 a2) => (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
mapTree _ Empty = Empty
mapTree f (Single x) = Single (f x)
mapTree f (Deep _ pr m sf) = deep (mapDigit f pr) (mapTree (mapNode f) m) (mapDigit f sf)
mapNode :: (Measured v2 a2) => (a1 -> a2) -> Node v1 a1 -> Node v2 a2
mapNode f (Node2 _ a b) = node2 (f a) (f b)
mapNode f (Node3 _ a b c) = node3 (f a) (f b) (f c)
mapDigit :: (a -> b) -> Digit a -> Digit b
mapDigit f (One a) = One (f a)
mapDigit f (Two a b) = Two (f a) (f b)
mapDigit f (Three a b c) = Three (f a) (f b) (f c)
mapDigit f (Four a b c d) = Four (f a) (f b) (f c) (f d)
fmapWithPos :: (Measured v1 a1, Measured v2 a2) => (v1 -> a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
fmapWithPos f = mapWPTree f mempty
mapWPTree :: (Measured v1 a1, Measured v2 a2) => (v1 -> a1 -> a2) -> v1 -> FingerTree v1 a1 -> FingerTree v2 a2
mapWPTree _ _ Empty = Empty
mapWPTree f v (Single x) = Single (f v x)
mapWPTree f v (Deep _ pr m sf) = deep
(mapWPDigit f v pr)
(mapWPTree (mapWPNode f) vpr m)
(mapWPDigit f vm sf)
where vpr = v `mappend` measure pr
vm = vpr `mappendVal` m
mapWPNode :: (Measured v1 a1, Measured v2 a2) => (v1 -> a1 -> a2) -> v1 -> Node v1 a1 -> Node v2 a2
mapWPNode f v (Node2 _ a b) = node2 (f v a) (f va b)
where va = v `mappend` measure a
mapWPNode f v (Node3 _ a b c) = node3 (f v a) (f va b) (f vab c)
where va = v `mappend` measure a
vab = va `mappend` measure b
mapWPDigit :: (Measured v a) => (v -> a -> b) -> v -> Digit a -> Digit b
mapWPDigit f v (One a ) = One (f v a)
mapWPDigit f v (Two a b) = Two (f v a) (f va b)
where va = v `mappend` measure a
mapWPDigit f v (Three a b c) = Three (f v a) (f va b) (f vab c)
where va = v `mappend` measure a
vab = va `mappend` measure b
mapWPDigit f v (Four a b c d) = Four (f v a) (f va b) (f vab c) (f vabc d)
where va = v `mappend` measure a
vab = va `mappend` measure b
vabc = vab `mappend` measure c
unsafeFmap :: (a -> b) -> FingerTree v a -> FingerTree v b
unsafeFmap _ Empty = Empty
unsafeFmap f (Single x) = Single (f x)
unsafeFmap f (Deep v pr m sf) = Deep v (mapDigit f pr) (unsafeFmap (unsafeFmapNode f) m) (mapDigit f sf)
unsafeFmapNode :: (a -> b) -> Node v a -> Node v b
unsafeFmapNode f (Node2 v a b) = Node2 v (f a) (f b)
unsafeFmapNode f (Node3 v a b c) = Node3 v (f a) (f b) (f c)
traverse' :: (Measured v1 a1, Measured v2 a2, Applicative f) => (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverse' = traverseTree
traverseTree :: (Measured v2 a2, Applicative f) => (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseTree _ Empty = pure Empty
traverseTree f (Single x) = Single <$> f x
traverseTree f (Deep _ pr m sf) = deep
<$> traverseDigit f pr
<*> traverseTree (traverseNode f) m
<*> traverseDigit f sf
traverseNode :: (Measured v2 a2, Applicative f) => (a1 -> f a2) -> Node v1 a1 -> f (Node v2 a2)
traverseNode f (Node2 _ a b) = node2 <$> f a <*> f b
traverseNode f (Node3 _ a b c) = node3 <$> f a <*> f b <*> f c
traverseDigit :: (Applicative f) => (a -> f b) -> Digit a -> f (Digit b)
traverseDigit f (One a) = One <$> f a
traverseDigit f (Two a b) = Two <$> f a <*> f b
traverseDigit f (Three a b c) = Three <$> f a <*> f b <*> f c
traverseDigit f (Four a b c d) = Four <$> f a <*> f b <*> f c <*> f d
traverseWithPos :: (Measured v1 a1, Measured v2 a2, Applicative f) => (v1 -> a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWithPos f = traverseWPTree f mempty
traverseWPTree :: (Measured v1 a1, Measured v2 a2, Applicative f) => (v1 -> a1 -> f a2) -> v1 -> FingerTree v1 a1 -> f (FingerTree v2 a2)
traverseWPTree _ _ Empty = pure Empty
traverseWPTree f v (Single x) = Single <$> f v x
traverseWPTree f v (Deep _ pr m sf) = deep
<$> traverseWPDigit f v pr
<*> traverseWPTree (traverseWPNode f) vpr m
<*> traverseWPDigit f vm sf
where vpr = v `mappend` measure pr
vm = vpr `mappendVal` m
traverseWPNode :: (Measured v1 a1, Measured v2 a2, Applicative f) => (v1 -> a1 -> f a2) -> v1 -> Node v1 a1 -> f (Node v2 a2)
traverseWPNode f v (Node2 _ a b) = node2 <$> f v a <*> f va b
where va = v `mappend` measure a
traverseWPNode f v (Node3 _ a b c) = node3 <$> f v a <*> f va b <*> f vab c
where va = v `mappend` measure a
vab = va `mappend` measure b
traverseWPDigit :: (Measured v a, Applicative f) => (v -> a -> f b) -> v -> Digit a -> f (Digit b)
traverseWPDigit f v (One a) = One <$> f v a
traverseWPDigit f v (Two a b) = Two <$> f v a <*> f va b
where va = v `mappend` measure a
traverseWPDigit f v (Three a b c) = Three <$> f v a <*> f va b <*> f vab c
where va = v `mappend` measure a
vab = va `mappend` measure b
traverseWPDigit f v (Four a b c d) = Four <$> f v a <*> f va b <*> f vab c <*> f vabc d
where va = v `mappend` measure a
vab = va `mappend` measure b
vabc = vab `mappend` measure c
unsafeTraverse :: (Applicative f) => (a -> f b) -> FingerTree v a -> f (FingerTree v b)
unsafeTraverse _ Empty = pure Empty
unsafeTraverse f (Single x) = Single <$> f x
unsafeTraverse f (Deep v pr m sf) = Deep v
<$> traverseDigit f pr
<*> unsafeTraverse (unsafeTraverseNode f) m
<*> traverseDigit f sf
unsafeTraverseNode :: (Applicative f) => (a -> f b) -> Node v a -> f (Node v b)
unsafeTraverseNode f (Node2 v a b) = Node2 v <$> f a <*> f b
unsafeTraverseNode f (Node3 v a b c) = Node3 v <$> f a <*> f b <*> f c
empty :: Measured v a => FingerTree v a
empty = Empty
singleton :: Measured v a => a -> FingerTree v a
singleton = Single
fromList :: (Measured v a) => [a] -> FingerTree v a
fromList = foldr (<|) Empty
instance Measured v a => Cons (FingerTree v a) where
cons a (Empty ) = Single a
cons a (Single b ) = deep (One a) Empty (One b)
cons a (Deep v (Four b c d e) m sf) = m `seq` Deep (measure a `mappend` v) (Two a b) (node3 c d e <| m) sf
cons a (Deep v pr m sf ) = Deep (measure a `mappend` v) (consDigit a pr) m sf
consDigit :: a -> Digit a -> Digit a
consDigit a (One b) = Two a b
consDigit a (Two b c) = Three a b c
consDigit a (Three b c d) = Four a b c d
consDigit _ (Four _ _ _ _) = illegalArgument "consDigit"
instance Measured v a => Snoc (FingerTree v a) where
snoc (Empty ) a = Single a
snoc (Single a ) b = deep (One a) Empty (One b)
snoc (Deep v pr m (Four a b c d)) e = m `seq` Deep (v `mappend` measure e) pr (m |> node3 a b c) (Two d e)
snoc (Deep v pr m sf ) x = Deep (v `mappend` measure x) pr m (snocDigit sf x)
snocDigit :: Digit a -> a -> Digit a
snocDigit (One a) b = Two a b
snocDigit (Two a b) c = Three a b c
snocDigit (Three a b c) d = Four a b c d
snocDigit (Four _ _ _ _) _ = illegalArgument "snocDigit"
null :: (Measured v a) => FingerTree v a -> Bool
null Empty = True
null _ = False
viewl :: (Measured v a) => FingerTree v a -> ViewL (FingerTree v) a
viewl Empty = EmptyL
viewl (Single x) = x :< Empty
viewl (Deep _ (One x) m sf) = x :< rotL m sf
viewl (Deep _ pr m sf) = lheadDigit pr :< deep (ltailDigit pr) m sf
rotL :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> FingerTree v a
rotL m sf = case viewl m of
EmptyL -> digitToTree sf
a :< m' -> Deep (measure m `mappend` measure sf) (nodeToDigit a) m' sf
lheadDigit :: Digit a -> a
lheadDigit (One a) = a
lheadDigit (Two a _) = a
lheadDigit (Three a _ _) = a
lheadDigit (Four a _ _ _) = a
ltailDigit :: Digit a -> Digit a
ltailDigit (One _) = illegalArgument "ltailDigit"
ltailDigit (Two _ b) = One b
ltailDigit (Three _ b c) = Two b c
ltailDigit (Four _ b c d) = Three b c d
viewr :: (Measured v a) => FingerTree v a -> ViewR (FingerTree v) a
viewr Empty = EmptyR
viewr (Single x) = Empty :> x
viewr (Deep _ pr m (One x)) = rotR pr m :> x
viewr (Deep _ pr m sf) = deep pr m (rtailDigit sf) :> rheadDigit sf
rotR :: (Measured v a) => Digit a -> FingerTree v (Node v a) -> FingerTree v a
rotR pr m = case viewr m of
EmptyR -> digitToTree pr
m' :> a -> Deep (measure pr `mappendVal` m) pr m' (nodeToDigit a)
rheadDigit :: Digit a -> a
rheadDigit (One a) = a
rheadDigit (Two _ b) = b
rheadDigit (Three _ _ c) = c
rheadDigit (Four _ _ _ d) = d
rtailDigit :: Digit a -> Digit a
rtailDigit (One _) = illegalArgument "rtailDigit"
rtailDigit (Two a _) = One a
rtailDigit (Three a b _) = Two a b
rtailDigit (Four a b c _) = Three a b c
digitToTree :: (Measured v a) => Digit a -> FingerTree v a
digitToTree (One a) = Single a
digitToTree (Two a b) = deep (One a) Empty (One b)
digitToTree (Three a b c) = deep (Two a b) Empty (One c)
digitToTree (Four a b c d) = deep (Two a b) Empty (Two c d)
append :: (Measured v a) => FingerTree v a -> FingerTree v a -> FingerTree v a
append = appendTree0
appendTree0 :: (Measured v a) => FingerTree v a -> FingerTree v a -> FingerTree v a
appendTree0 Empty xs = xs
appendTree0 xs Empty = xs
appendTree0 (Single x) xs = x <| xs
appendTree0 xs (Single x) = xs |> x
appendTree0 (Deep _ pr1 m1 sf1) (Deep _ pr2 m2 sf2) = deep pr1 (addDigits0 m1 sf1 pr2 m2) sf2
addDigits0 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits0 m1 (One a ) (One b ) m2 = appendTree1 m1 (node2 a b ) m2
addDigits0 m1 (One a ) (Two b c ) m2 = appendTree1 m1 (node3 a b c) m2
addDigits0 m1 (One a ) (Three b c d ) m2 = appendTree2 m1 (node2 a b ) (node2 c d ) m2
addDigits0 m1 (One a ) (Four b c d e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits0 m1 (Two a b ) (One c ) m2 = appendTree1 m1 (node3 a b c) m2
addDigits0 m1 (Two a b ) (Two c d ) m2 = appendTree2 m1 (node2 a b ) (node2 c d ) m2
addDigits0 m1 (Two a b ) (Three c d e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits0 m1 (Two a b ) (Four c d e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Three a b c ) (One d ) m2 = appendTree2 m1 (node2 a b ) (node2 c d ) m2
addDigits0 m1 (Three a b c ) (Two d e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits0 m1 (Three a b c ) (Three d e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Three a b c ) (Four d e f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g) m2
addDigits0 m1 (Four a b c d ) (One e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits0 m1 (Four a b c d ) (Two e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Four a b c d ) (Three e f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g) m2
addDigits0 m1 (Four a b c d ) (Four e f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
appendTree1 :: (Measured v a) => FingerTree v a -> a -> FingerTree v a -> FingerTree v a
appendTree1 Empty a xs = a <| xs
appendTree1 xs a Empty = xs |> a
appendTree1 (Single x) a xs = x <| a <| xs
appendTree1 xs a (Single x) = xs |> a |> x
appendTree1 (Deep _ pr1 m1 sf1) a (Deep _ pr2 m2 sf2) = deep pr1 (addDigits1 m1 sf1 a pr2 m2) sf2
addDigits1 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits1 m1 (One a ) b (One c ) m2 = appendTree1 m1 (node3 a b c) m2
addDigits1 m1 (One a ) b (Two c d ) m2 = appendTree2 m1 (node2 a b ) (node2 c d ) m2
addDigits1 m1 (One a ) b (Three c d e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits1 m1 (One a ) b (Four c d e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Two a b ) c (One d ) m2 = appendTree2 m1 (node2 a b ) (node2 c d ) m2
addDigits1 m1 (Two a b ) c (Two d e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits1 m1 (Two a b ) c (Three d e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Two a b ) c (Four d e f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits1 m1 (Three a b c ) d (One e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits1 m1 (Three a b c ) d (Two e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Three a b c ) d (Three e f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits1 m1 (Three a b c ) d (Four e f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits1 m1 (Four a b c d ) e (One f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Four a b c d ) e (Two f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits1 m1 (Four a b c d ) e (Three f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits1 m1 (Four a b c d ) e (Four f g h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
appendTree2 :: (Measured v a) => FingerTree v a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree2 Empty a b xs = a <| b <| xs
appendTree2 xs a b Empty = xs |> a |> b
appendTree2 (Single x) a b xs = x <| a <| b <| xs
appendTree2 xs a b (Single x) = xs |> a |> b |> x
appendTree2 (Deep _ pr1 m1 sf1) a b (Deep _ pr2 m2 sf2) = deep pr1 (addDigits2 m1 sf1 a b pr2 m2) sf2
addDigits2 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits2 m1 (One a ) b c (One d ) m2 = appendTree2 m1 (node2 a b ) (node2 c d ) m2
addDigits2 m1 (One a ) b c (Two d e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits2 m1 (One a ) b c (Three d e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (One a ) b c (Four d e f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits2 m1 (Two a b ) c d (One e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits2 m1 (Two a b ) c d (Two e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (Two a b ) c d (Three e f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits2 m1 (Two a b ) c d (Four e f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits2 m1 (Three a b c ) d e (One f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (Three a b c ) d e (Two f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits2 m1 (Three a b c ) d e (Three f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits2 m1 (Three a b c ) d e (Four f g h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits2 m1 (Four a b c d ) e f (One g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits2 m1 (Four a b c d ) e f (Two g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits2 m1 (Four a b c d ) e f (Three g h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits2 m1 (Four a b c d ) e f (Four g h i j ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h ) (node2 i j) m2
appendTree3 :: (Measured v a) => FingerTree v a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree3 Empty a b c xs = a <| b <| c <| xs
appendTree3 xs a b c Empty = xs |> a |> b |> c
appendTree3 (Single x) a b c xs = x <| a <| b <| c <| xs
appendTree3 xs a b c (Single x) = xs |> a |> b |> c |> x
appendTree3 (Deep _ pr1 m1 sf1) a b c (Deep _ pr2 m2 sf2) = deep pr1 (addDigits3 m1 sf1 a b c pr2 m2) sf2
addDigits3 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits3 m1 (One a ) b c d (One e ) m2 = appendTree2 m1 (node3 a b c) (node2 d e ) m2
addDigits3 m1 (One a ) b c d (Two e f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits3 m1 (One a ) b c d (Three e f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits3 m1 (One a ) b c d (Four e f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits3 m1 (Two a b ) c d e (One f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits3 m1 (Two a b ) c d e (Two f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits3 m1 (Two a b ) c d e (Three f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits3 m1 (Two a b ) c d e (Four f g h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Three a b c ) d e f (One g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits3 m1 (Three a b c ) d e f (Two g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits3 m1 (Three a b c ) d e f (Three g h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Three a b c ) d e f (Four g h i j ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h ) (node2 i j) m2
addDigits3 m1 (Four a b c d ) e f g (One h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits3 m1 (Four a b c d ) e f g (Two h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Four a b c d ) e f g (Three h i j ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h ) (node2 i j) m2
addDigits3 m1 (Four a b c d ) e f g (Four h i j k ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k) m2
appendTree4 :: (Measured v a) => FingerTree v a -> a -> a -> a -> a -> FingerTree v a -> FingerTree v a
appendTree4 Empty a b c d xs = a <| b <| c <| d <| xs
appendTree4 xs a b c d Empty = xs |> a |> b |> c |> d
appendTree4 (Single x) a b c d xs = x <| a <| b <| c <| d <| xs
appendTree4 xs a b c d (Single x) = xs |> a |> b |> c |> d |> x
appendTree4 (Deep _ pr1 m1 sf1) a b c d (Deep _ pr2 m2 sf2) = deep pr1 (addDigits4 m1 sf1 a b c d pr2 m2) sf2
addDigits4 :: (Measured v a) => FingerTree v (Node v a) -> Digit a -> a -> a -> a -> a -> Digit a -> FingerTree v (Node v a) -> FingerTree v (Node v a)
addDigits4 m1 (One a ) b c d e (One f ) m2 = appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits4 m1 (One a ) b c d e (Two f g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits4 m1 (One a ) b c d e (Three f g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits4 m1 (One a ) b c d e (Four f g h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Two a b ) c d e f (One g ) m2 = appendTree3 m1 (node3 a b c) (node2 d e ) (node2 f g ) m2
addDigits4 m1 (Two a b ) c d e f (Two g h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits4 m1 (Two a b ) c d e f (Three g h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Two a b ) c d e f (Four g h i j ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h ) (node2 i j ) m2
addDigits4 m1 (Three a b c ) d e f g (One h ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h ) m2
addDigits4 m1 (Three a b c ) d e f g (Two h i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Three a b c ) d e f g (Three h i j ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h ) (node2 i j ) m2
addDigits4 m1 (Three a b c ) d e f g (Four h i j k ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k ) m2
addDigits4 m1 (Four a b c d ) e f g h (One i ) m2 = appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Four a b c d ) e f g h (Two i j ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h ) (node2 i j ) m2
addDigits4 m1 (Four a b c d ) e f g h (Three i j k ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k ) m2
addDigits4 m1 (Four a b c d ) e f g h (Four i j k l ) m2 = appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node3 j k l) m2
split :: (Measured v a) => (v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)
split _ Empty = (Empty, Empty)
split p xs
| p (measure xs) = (l, x <| r)
| otherwise = (xs, Empty)
where Split l x r = splitTree p mempty xs
takeUntil :: (Measured v a) => (v -> Bool) -> FingerTree v a -> FingerTree v a
takeUntil p = fst . split p
dropUntil :: (Measured v a) => (v -> Bool) -> FingerTree v a -> FingerTree v a
dropUntil p = snd . split p
data Split t a = Split t a t
splitTree :: (Measured v a) => (v -> Bool) -> v -> FingerTree v a -> Split (FingerTree v a) a
splitTree _ _ Empty = illegalArgument "splitTree"
splitTree _ _ (Single x) = Split Empty x Empty
splitTree p i (Deep _ pr m sf)
| p vpr = let Split l x r = splitDigit p i pr
in Split (maybe Empty digitToTree l) x (deepL r m sf)
| p vm = let Split ml xs mr = splitTree p vpr m
Split l x r = splitNode p (vpr `mappendVal` ml) xs
in Split (deepR pr ml l) x (deepL r mr sf)
| otherwise = let Split l x r = splitDigit p vm sf
in Split (deepR pr m l) x (maybe Empty digitToTree r)
where vpr = i `mappend` measure pr
vm = vpr `mappendVal` m
mappendVal :: (Measured v a) => v -> FingerTree v a -> v
mappendVal v Empty = v
mappendVal v t = v `mappend` measure t
deepL :: (Measured v a) => Maybe (Digit a) -> FingerTree v (Node v a) -> Digit a -> FingerTree v a
deepL Nothing m sf = rotL m sf
deepL (Just pr) m sf = deep pr m sf
deepR :: (Measured v a) => Digit a -> FingerTree v (Node v a) -> Maybe (Digit a) -> FingerTree v a
deepR pr m Nothing = rotR pr m
deepR pr m (Just sf) = deep pr m sf
splitNode :: (Measured v a) => (v -> Bool) -> v -> Node v a -> Split (Maybe (Digit a)) a
splitNode p i (Node2 _ a b)
| p va = Split Nothing a (Just (One b))
| otherwise = Split (Just (One a)) b Nothing
where va = i `mappend` measure a
splitNode p i (Node3 _ a b c)
| p va = Split Nothing a (Just (Two b c))
| p vab = Split (Just (One a)) b (Just (One c))
| otherwise = Split (Just (Two a b)) c Nothing
where va = i `mappend` measure a
vab = va `mappend` measure b
splitDigit :: (Measured v a) => (v -> Bool) -> v -> Digit a -> Split (Maybe (Digit a)) a
splitDigit _ i (One a) = i `seq` Split Nothing a Nothing
splitDigit p i (Two a b)
| p va = Split Nothing a (Just (One b))
| otherwise = Split (Just (One a)) b Nothing
where va = i `mappend` measure a
splitDigit p i (Three a b c)
| p va = Split Nothing a (Just (Two b c))
| p vab = Split (Just (One a)) b (Just (One c))
| otherwise = Split (Just (Two a b)) c Nothing
where va = i `mappend` measure a
vab = va `mappend` measure b
splitDigit p i (Four a b c d)
| p va = Split Nothing a (Just (Three b c d))
| p vab = Split (Just (One a)) b (Just (Two c d))
| p vabc = Split (Just (Two a b)) c (Just (One d))
| otherwise = Split (Just (Three a b c)) d Nothing
where va = i `mappend` measure a
vab = va `mappend` measure b
vabc = vab `mappend` measure c
reverse :: (Measured v a) => FingerTree v a -> FingerTree v a
reverse = reverseTree id
reverseTree :: (Measured v2 a2) => (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2
reverseTree _ Empty = Empty
reverseTree f (Single x) = Single (f x)
reverseTree f (Deep _ pr m sf) = deep (reverseDigit f sf) (reverseTree (reverseNode f) m) (reverseDigit f pr)
reverseNode :: (Measured v2 a2) => (a1 -> a2) -> Node v1 a1 -> Node v2 a2
reverseNode f (Node2 _ a b) = node2 (f b) (f a)
reverseNode f (Node3 _ a b c) = node3 (f c) (f b) (f a)
reverseDigit :: (a -> b) -> Digit a -> Digit b
reverseDigit f (One a) = One (f a)
reverseDigit f (Two a b) = Two (f b) (f a)
reverseDigit f (Three a b c) = Three (f c) (f b) (f a)
reverseDigit f (Four a b c d) = Four (f d) (f c) (f b) (f a)
illegalArgument :: String -> a
illegalArgument name = error $ "Logic error: " ++ name ++ " called with illegal argument"