-- ------------------------------------------------------------ {- | Module : Control.Arrow.ArrowList Copyright : Copyright (C) 2005 Uwe Schmidt License : MIT Maintainer : Uwe Schmidt (uwe\@fh-wedel.de) Stability : experimental Portability: portable The list arrow class This module defines the interface for list arrows. A list arrow is a function that gives a list of results for a given argument. A single element result represents a normal function. An empty list often indicates that the function is undefined for the given argument. The empty list may also represent False, non-empty lists True. A list with more than one element gives all results for a so called nondeterministic function. -} -- ------------------------------------------------------------ module Control.Arrow.ArrowList ( ArrowList(..) ) where import Control.Arrow infixl 8 >>., >. infixl 2 $<, $<<, $<<<, $<<<< infixl 2 $<$ -- ------------------------------------------------------------ -- | The interface for list arrows -- -- Only 'mkA', 'isA' '(>>.)' don't have default implementations class (Arrow a, ArrowPlus a, ArrowZero a, ArrowApply a) => ArrowList a where -- | construction of a 2 argument arrow from a binary function -- | -- | example: @ a1 &&& a2 >>> arr2 f @ arr2 :: (b1 -> b2 -> c) -> a (b1, b2) c arr2 = arr . uncurry {-# INLINE arr2 #-} -- | construction of a 3 argument arrow from a 3-ary function -- | -- | example: @ a1 &&& a2 &&& a3 >>> arr3 f @ arr3 :: (b1 -> b2 -> b3 -> c) -> a (b1, (b2, b3)) c arr3 f = arr (\ ~(x1, ~(x2, x3)) -> f x1 x2 x3) {-# INLINE arr3 #-} -- | construction of a 4 argument arrow from a 4-ary function -- | -- | example: @ a1 &&& a2 &&& a3 &&& a4 >>> arr4 f @ arr4 :: (b1 -> b2 -> b3 -> b4 -> c) -> a (b1, (b2, (b3, b4))) c arr4 f = arr (\ ~(x1, ~(x2, ~(x3, x4))) -> f x1 x2 x3 x4) {-# INLINE arr4 #-} -- | construction of a 2 argument arrow from a singe argument arrow arr2A :: (b -> a c d) -> a (b, c) d arr2A f = first (arr f) >>> app {-# INLINE arr2A #-} -- | constructor for a list arrow from a function with a list as result arrL :: (b -> [c]) -> a b c -- | constructor for a list arrow with 2 arguments arr2L :: (b -> c -> [d]) -> a (b, c) d arr2L = arrL . uncurry {-# INLINE arr2L #-} -- | constructor for a const arrow: @ constA = arr . const @ constA :: c -> a b c constA = arr . const {-# INLINE constA #-} -- | constructor for a const arrow: @ constL = arrL . const @ constL :: [c] -> a b c constL = arrL . const {-# INLINE constL #-} -- | builds an arrow from a predicate. -- If the predicate holds, the single list containing the input is returned, else the empty list isA :: (b -> Bool) -> a b b -- | combinator for converting the result of a list arrow into another list -- -- example: @ foo >>. reverse @ reverses the the result of foo -- -- example: @ foo >>. take 1 @ constructs a deterministic version of foo by deleting all further results (>>.) :: a b c -> ([c] -> [d]) -> a b d -- | combinator for converting the result of an arrow into a single element result (>.) :: a b c -> ([c] -> d ) -> a b d af >. f = af >>. ((:[]) . f) {-# INLINE (>.) #-} -- | combinator for converting an arrow into a determinstic version with all results collected in a single element list -- -- @ listA af = af >>. (:[]) @ -- -- this is useful when the list of results computed by an arrow must be manipulated (e.g. sorted) -- -- example for sorting the results of a filter -- -- > collectAndSort :: a b c -> a b c -- > -- > collectAndSort collect = listA collect >>> arrL sort listA :: a b c -> a b [c] listA af = af >>. (:[]) {-# INLINE listA #-} -- | the inverse of 'listA' -- -- @ listA af >>> unlistA = af @ -- -- unlistA is defined as @ arrL id @ unlistA :: a [b] b unlistA = arrL id {-# INLINE unlistA #-} -- | the identity arrow, alias for returnA this :: a b b this = returnA {-# INLINE this #-} -- | the zero arrow, alias for zeroArrow none :: a b c none = zeroArrow {-# INLINE none #-} -- | converts an arrow, that may fail, into an arrow that always succeeds -- -- example: @ withDefault none \"abc\" @ is equivalent to @ constA \"abc\" @ withDefault :: a b c -> c -> a b c withDefault a d = a >>. \ x -> if null x then [d] else x {-# INLINE withDefault #-} -- | makes a list arrow deterministic, the number of results is at most 1 -- -- definition -- -- > single f = f >>. take 1 -- -- examples with strings: -- -- > runLA ( single none ) "x" == [] -- > runLA ( single this ) "x" == ["x"] -- > runLA ( single -- > (constA "y" -- > <+> this ) ) "x" == ["y"] single :: a b c -> a b c single f = f >>. take 1 -- | compute an arrow from the input and apply the arrow to this input -- -- definition: @ (f &&& this) >>> app @ -- -- in a point free style, there is no way to use an argument in 2 places, -- this is a combinator for simulating this. first the argument is used to compute an arrow, -- then this new arrow is applied to the input -- -- applyA coresponds to: @ apply f x = let g = f x in g x @ -- -- see also: '$<', '$<<', '$<<<', '$<<<<', '$<$' applyA :: a b (a b c) -> a b c applyA f = (f &&& this) >>> app -- | compute the parameter for an arrow with extra parameters from the input -- and apply the arrow for all parameter values to the input -- -- a kind of \"function call\" for arrows, useful for joining arrows -- -- > infixl 2 ($<) -- -- definition: -- -- > g $< f = applyA (f >>> arr g) -- -- if @f@ fails, the whole arrow fails, e.g. @ g \$\< none == none @ -- -- if @f@ computes n values and @g@ is deterministic, the whole arrow computes n values -- -- examples with simple list arrows with strings -- -- > prefixString :: String -> a String String -- > prefixString s = arr (s++) -- > -- > runLA ( prefixString $< none ) "x" == [] -- > runLA ( prefixString $< constA "y" ) "x" == ["yx"] -- > runLA ( prefixString $< this ) "x" == ["xx"] -- > runLA ( prefixString $< constA "y" -- > <+> constA "z" ) "x" == ["yx","zx"] -- > runLA ( prefixString $< constA "y" -- > <+> this -- > <+> constA "z" ) "x" == ["yx","xx","zx"] -- -- see also: 'applyA', '$<<', '$<<<', '$<<<<', '$<$' ($<) :: (c -> a b d) -> a b c -> a b d g $< f = applyA (f >>> arr g) -- | binary version of '$<' -- -- example with simple list arrows with strings -- -- > infixString :: String -> String -> a String String -- > infixString s1 s2 -- > = arr (\ s -> s1 ++ s ++ s2) -- > -- > runLA ( infixString $<< constA "y" &&& constA "z" ) "x" = ["yxz"] -- > runLA ( infixString $<< this &&& this ) "x" = ["xxx"] -- > runLA ( infixString $<< constA "y" -- > &&& (constA "z" <+> this) ) "x" = ["yxz", "yxx"] ($<<) :: (c1 -> c2 -> a b d) -> a b (c1, c2) -> a b d f $<< g = applyA (g >>> arr2 f) -- | version of '$<' for arrows with 3 extra parameters -- -- typical usage -- -- > f $<<< g1 &&& g2 &&& g3 ($<<<) :: (c1 -> c2 -> c3 -> a b d) -> a b (c1, (c2, c3)) -> a b d f $<<< g = applyA (g >>> arr3 f) -- | version of '$<' for arrows with 4 extra parameters -- -- typical usage -- -- > f $<<<< g1 &&& g2 &&& g3 &&& g4 ($<<<<) :: (c1 -> c2 -> c3 -> c4 -> a b d) -> a b (c1, (c2, (c3, c4))) -> a b d f $<<<< g = applyA (g >>> arr4 f) -- | compute the parameter for an arrow @f@ with an extra parameter by an arrow @g@ -- and apply all the results from @g@ sequentially to the input -- -- > infixl 2 ($<$) -- -- typical usage: -- -- > g :: a b c -- > g = ... -- > -- > f :: c -> a b b -- > f x = ... x ... -- > -- > f $<$ g -- -- @f@ computes the extra parameters for @g@ from the input of type @b@ and @g@ is applied with this -- parameter to the input. This allows programming in a point wise style in @g@, which becomes -- neccessary, when a value is needed more than once. -- -- this combinator is useful, when transforming a single value (document) step by step, -- with @g@ for collecting the data for all steps, and @f@ for transforming the input step by step -- -- if @g@ is deterministic (computes exactly one result), -- @ g $\<$ f == g $\< f @ holds -- -- if @g@ fails, @ f $<$ g == this @ -- -- if @g@ computes more than one result, @f@ is applied sequentially to the input for every result from @g@ -- -- examples with simple list arrows with strings -- -- > prefixString :: String -> a String String -- > prefixString s = arr (s++) -- > -- > runLA ( prefixString $<$ none ) "x" == ["x"] -- > runLA ( prefixString $<$ constA "y" ) "x" == ["yx"] -- > runLA ( prefixString $<$ constA "y" <+> constA "z" ) "x" == ["zyx"] -- > runLA ( prefixString $<$ constA "y" <+> this -- > <+> constA "z" ) "x" == ["zxyx"] -- -- example with two extra parameter -- -- > g1 :: a b c1 -- > g2 :: a b c2 -- > -- > f :: (c1, c2) -> a b b -- > f (x1, x2) = ... x1 ... x2 ... -- > -- > f $<$ g1 &&& g2 -- -- see also: 'applyA', '$<' ($<$) :: (c -> (a b b)) -> a b c -> a b b g $<$ f = applyA (listA (f >>> arr g) >>> arr seqA) -- | merge the result pairs of an arrow with type @a a1 (b1, b2)@ -- by combining the tuple components with the @op@ arrow -- -- examples with simple list arrows working on strings and XmlTrees -- -- > a1 :: a String (XmlTree, XmlTree) -- > a1 = selem "foo" [this >>> mkText] -- > &&& -- > selem "bar" [arr (++"0") >>> mkText] -- > -- > runLA (a1 >>> mergeA (<+>) >>> xshow this) "42" == ["<foo>42</foo>","<bar>420</bar>"] -- > runLA (a1 >>> mergeA (+=) >>> xshow this) "42" == ["<foo>42<bar>420</bar></foo>"] -- -- see also: 'applyA', '$<' and '+=' in class 'Text.XML.HXT.Arrow.ArrowXml' mergeA :: (a (a1, b1) a1 -> a (a1, b1) b1 -> a (a1, b1) c) -> a (a1, b1) c mergeA op = (\ x -> arr fst `op` constA (snd x)) $< this -- | useful only for arrows with side effects: perform applies an arrow to the input -- ignores the result and returns the input -- -- example: @ ... >>> perform someTraceArrow >>> ... @ perform :: a b c -> a b b perform f = listA f &&& this >>> arr snd {-# INLINE perform #-} -- | generalization of arrow combinator '<+>' -- -- definition: @ catA = foldl (\<+\>) none @ catA :: [a b c] -> a b c catA = foldl (<+>) none {-# INLINE catA #-} -- | generalization of arrow combinator '>>>' -- -- definition: @ seqA = foldl (>>>) this @ seqA :: [a b b] -> a b b seqA = foldl (>>>) this {-# INLINE seqA #-} -- ------------------------------------------------------------