{-# Language AllowAmbiguousTypes #-}
{-# Language DataKinds #-}
{-# Language DeriveFunctor #-}
{-# Language DerivingStrategies #-}
{-# Language EmptyDataDecls #-}
{-# Language FlexibleInstances #-}
{-# Language InstanceSigs #-}
{-# Language MultiParamTypeClasses #-}
{-# Language PolyKinds #-}
{-# Language ScopedTypeVariables #-}
{-# Language StandaloneKindSignatures #-}
{-# Language TypeApplications #-}
{-# Language TypeFamilies #-}
{-# Language TypeOperators #-}
{-# Language UndecidableInstances #-}
module Generic.Applicative.Idiom where
import Control.Applicative
import Data.Functor.Compose
import Data.Functor.Identity
import Data.Functor.Product
import Data.Kind
import Data.Proxy
import Generic.Applicative.Internal
type Idiom :: tagKind -> (Type -> Type) -> (Type -> Type) -> Constraint
class (Applicative f, Applicative g) => Idiom tag f g where
idiom :: f ~> g
data Id
instance (Applicative f, f ~ g) => Idiom Id f g where
idiom :: f ~> g
idiom :: f x -> g x
idiom = f x -> g x
forall a. a -> a
id
data Comp tag1 tag2
instance (Idiom tag1 f g, Idiom tag2 g h) => Idiom (Comp tag1 tag2) f h where
idiom :: f ~> h
idiom :: f x -> h x
idiom = Idiom tag2 g h => g ~> h
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag2 @g @h (g x -> h x) -> (f x -> g x) -> f x -> h x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Idiom tag1 f g => f ~> g
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag1 @f @g
data Initial
instance (Identity ~ id, Applicative f) => Idiom Initial id f where
idiom :: Identity ~> f
idiom :: Identity x -> f x
idiom (Identity x
a) = x -> f x
forall (f :: * -> *) a. Applicative f => a -> f a
pure x
a
data Terminal
instance (Applicative f, Monoid m) => Idiom Terminal f (Const m) where
idiom :: f ~> Const m
idiom :: f x -> Const m x
idiom = f x -> Const m x
forall a. Monoid a => a
mempty
instance (Applicative f, Monoid m) => Idiom Terminal f Proxy where
idiom :: f ~> Proxy
idiom :: f x -> Proxy x
idiom = f x -> Proxy x
forall a. Monoid a => a
mempty
data Inner
instance (Applicative f, Applicative inner, comp ~ Compose f inner) => Idiom Inner f comp where
idiom :: f ~> Compose f inner
idiom :: f x -> Compose f inner x
idiom = f (inner x) -> Compose f inner x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (inner x) -> Compose f inner x)
-> (f x -> f (inner x)) -> f x -> Compose f inner x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x -> inner x) -> f x -> f (inner x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap x -> inner x
forall (f :: * -> *) a. Applicative f => a -> f a
pure
data Outer
instance (Applicative outer, Applicative f, comp ~ Compose outer f) => Idiom Outer f comp where
idiom :: f ~> Compose outer f
idiom :: f x -> Compose outer f x
idiom = outer (f x) -> Compose outer f x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (outer (f x) -> Compose outer f x)
-> (f x -> outer (f x)) -> f x -> Compose outer f x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f x -> outer (f x)
forall (f :: * -> *) a. Applicative f => a -> f a
pure
type family
CheckIdiomDup f where
CheckIdiomDup (Product _ _) = 'True
CheckIdiomDup _ = 'False
data Dup
instance (Applicative f, Applicative g, IdiomDup (CheckIdiomDup g) f g) => Idiom Dup f g where
idiom :: f ~> g
idiom :: f x -> g x
idiom = f x -> g x
forall (tag :: Bool) (f :: * -> *) (g :: * -> *).
IdiomDup tag f g =>
f ~> g
idiomDup
class (CheckIdiomDup g ~ tag, Applicative f, Applicative g) => IdiomDup tag f g where
idiomDup :: f ~> g
idiomDup = f x -> g x
forall a. HasCallStack => a
undefined
instance (Applicative f, CheckIdiomDup f ~ 'False, f ~ f') => IdiomDup 'False f f' where
idiomDup :: f ~> f
idiomDup :: f x -> f x
idiomDup = f x -> f x
forall a. a -> a
id
instance (f ~ g, IdiomDup (CheckIdiomDup g') g g') => IdiomDup 'True f (Product g g') where
idiomDup :: f ~> Product g g'
idiomDup :: f x -> Product g g' x
idiomDup f x
as = f x -> g' x -> Product f g' x
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair f x
as (f x -> g' x
forall (tag :: Bool) (f :: * -> *) (g :: * -> *).
IdiomDup tag f g =>
f ~> g
idiomDup f x
as)
data tag1 &&& tag2
instance (Idiom tag1 f g, Idiom tag2 f h) => Idiom (tag1 &&& tag2) f (Product g h) where
idiom :: f ~> Product g h
idiom :: f x -> Product g h x
idiom f x
as = g x -> h x -> Product g h x
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (f x -> g x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag1 f x
as) (f x -> h x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag2 f x
as)
data Fst
instance (Applicative f, Applicative g) => Idiom Fst (Product f g) f where
idiom :: Product f g ~> f
idiom :: Product f g x -> f x
idiom (Pair f x
as g x
_) = f x
as
data Snd
instance (Applicative f, Applicative g) => Idiom Snd (Product f g) g where
idiom :: Product f g ~> g
idiom :: Product f g x -> g x
idiom (Pair f x
_ g x
bs) = g x
bs