{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
module IntervalAlgebra.RelationProperties
( IntervalRelationProperties(..)
) where
import Data.Maybe (fromJust, isJust, isNothing)
import Data.Set (Set, disjointUnion, fromList,
member)
import Data.Time as DT (Day, NominalDiffTime, UTCTime)
import IntervalAlgebra.Arbitrary
import IntervalAlgebra.Core
import Test.QuickCheck (Arbitrary (arbitrary), Property,
(===), (==>))
allIArelations :: (Ord a) => [ComparativePredicateOf1 (Interval a)]
allIArelations :: forall a. Ord a => [ComparativePredicateOf1 (Interval a)]
allIArelations =
[ ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
equals
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Eq a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
meets
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Eq a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
metBy
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
before
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
after
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
starts
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
startedBy
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
finishes
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
finishedBy
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
overlaps
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
overlappedBy
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
during
, ComparativePredicateOf1 (Interval a)
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
contains
]
class ( IntervalSizeable a b ) => IntervalRelationProperties a b where
prop_exclusiveRelations:: Interval a -> Interval a -> Property
prop_exclusiveRelations Interval a
x Interval a
y =
( Int
1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== [Bool] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ((Bool -> Bool) -> [Bool] -> [Bool]
forall a. (a -> Bool) -> [a] -> [a]
filter Bool -> Bool
forall a. a -> a
id ([Bool] -> [Bool]) -> [Bool] -> [Bool]
forall a b. (a -> b) -> a -> b
$ ((Interval a -> Interval a -> Bool) -> Bool)
-> [Interval a -> Interval a -> Bool] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
map (\Interval a -> Interval a -> Bool
r -> Interval a -> Interval a -> Bool
r Interval a
x Interval a
y) [Interval a -> Interval a -> Bool]
forall a. Ord a => [ComparativePredicateOf1 (Interval a)]
allIArelations)) Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
True
prop_predicate_unions :: Ord a =>
Set IntervalRelation
-> ComparativePredicateOf2 (Interval a) (Interval a)
-> Interval a
-> Interval a
-> Property
prop_predicate_unions Set IntervalRelation
s Interval a -> Interval a -> Bool
pred Interval a
i0 Interval a
i1 =
Interval a -> Interval a -> Bool
pred Interval a
i0 Interval a
i1 Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== (Interval a -> Interval a -> IntervalRelation
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
i0 a -> i1 a -> IntervalRelation
relate Interval a
i0 Interval a
i1 IntervalRelation -> Set IntervalRelation -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` Set IntervalRelation
s)
prop_IAbefore :: Interval a -> Interval a -> Property
prop_IAbefore Interval a
i Interval a
j =
Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
before Interval a
i Interval a
j Bool -> Bool -> Property
forall prop. Testable prop => Bool -> prop -> Property
==> (Interval a
i Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Eq a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`meets` Interval a
k) Bool -> Bool -> Bool
&& (Interval a
k Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Eq a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`meets` Interval a
j)
where k :: Interval a
k = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)
prop_IAstarts:: Interval a -> Interval a -> Property
prop_IAstarts Interval a
i Interval a
j
| Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
starts Interval a
i Interval a
j = (Interval a
j Interval a -> Interval a -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe (Interval a) -> Interval a
forall a. HasCallStack => Maybe a -> a
fromJust (Interval a
i Interval a -> Interval a -> Maybe (Interval a)
forall (i :: * -> *) a.
IntervalCombinable i a =>
i a -> i a -> Maybe (i a)
.+. Interval a
k)) Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
True
| Bool
otherwise = Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
starts Interval a
i Interval a
j Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
False
where k :: Interval a
k = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
j) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)
prop_IAfinishes:: Interval a -> Interval a -> Property
prop_IAfinishes Interval a
i Interval a
j
| Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
finishes Interval a
i Interval a
j = (Interval a
j Interval a -> Interval a -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe (Interval a) -> Interval a
forall a. HasCallStack => Maybe a -> a
fromJust ( Interval a
k Interval a -> Interval a -> Maybe (Interval a)
forall (i :: * -> *) a.
IntervalCombinable i a =>
i a -> i a -> Maybe (i a)
.+. Interval a
i)) Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
True
| Bool
otherwise = Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
finishes Interval a
i Interval a
j Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
False
where k :: Interval a
k = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
i) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j)
prop_IAoverlaps:: Interval a -> Interval a -> Property
prop_IAoverlaps Interval a
i Interval a
j
| Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
overlaps Interval a
i Interval a
j = ((Interval a
i Interval a -> Interval a -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe (Interval a) -> Interval a
forall a. HasCallStack => Maybe a -> a
fromJust ( Interval a
k Interval a -> Interval a -> Maybe (Interval a)
forall (i :: * -> *) a.
IntervalCombinable i a =>
i a -> i a -> Maybe (i a)
.+. Interval a
l )) Bool -> Bool -> Bool
&&
(Interval a
j Interval a -> Interval a -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe (Interval a) -> Interval a
forall a. HasCallStack => Maybe a -> a
fromJust ( Interval a
l Interval a -> Interval a -> Maybe (Interval a)
forall (i :: * -> *) a.
IntervalCombinable i a =>
i a -> i a -> Maybe (i a)
.+. Interval a
m ))) Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
True
| Bool
otherwise = Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
overlaps Interval a
i Interval a
j Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
False
where k :: Interval a
k = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
i)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
i)
l :: Interval a
l = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j)
m :: Interval a
m = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
j) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)
prop_IAduring:: Interval a -> Interval a-> Property
prop_IAduring Interval a
i Interval a
j
| Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
during Interval a
i Interval a
j = (Interval a
j Interval a -> Interval a -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe (Interval a) -> Interval a
forall a. HasCallStack => Maybe a -> a
fromJust ( Maybe (Interval a) -> Interval a
forall a. HasCallStack => Maybe a -> a
fromJust (Interval a
k Interval a -> Interval a -> Maybe (Interval a)
forall (i :: * -> *) a.
IntervalCombinable i a =>
i a -> i a -> Maybe (i a)
.+. Interval a
i) Interval a -> Interval a -> Maybe (Interval a)
forall (i :: * -> *) a.
IntervalCombinable i a =>
i a -> i a -> Maybe (i a)
.+. Interval a
l)) Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
True
| Bool
otherwise = Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
during Interval a
i Interval a
j Bool -> Bool -> Property
forall a. (Eq a, Show a) => a -> a -> Property
=== Bool
False
where k :: Interval a
k = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
i) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
begin Interval a
j)
l :: Interval a
l = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
j) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)) (Interval a -> a
forall (i :: * -> *) a. Intervallic i => i a -> a
end Interval a
i)
prop_disjoint_predicate :: (Ord a) =>
Interval a
-> Interval a
-> Property
prop_disjoint_predicate = Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
forall a b.
(IntervalRelationProperties a b, Ord a) =>
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
prop_predicate_unions Set IntervalRelation
disjointRelations Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
disjoint
prop_notdisjoint_predicate :: (Ord a) =>
Interval a
-> Interval a
-> Property
prop_notdisjoint_predicate =
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
forall a b.
(IntervalRelationProperties a b, Ord a) =>
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
prop_predicate_unions (Set IntervalRelation -> Set IntervalRelation
complement Set IntervalRelation
disjointRelations) Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
notDisjoint
prop_concur_predicate :: (Ord a) =>
Interval a
-> Interval a
-> Property
prop_concur_predicate =
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
forall a b.
(IntervalRelationProperties a b, Ord a) =>
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
prop_predicate_unions (Set IntervalRelation -> Set IntervalRelation
complement Set IntervalRelation
disjointRelations) Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
concur
prop_within_predicate :: (Ord a) =>
Interval a
-> Interval a
-> Property
prop_within_predicate = Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
forall a b.
(IntervalRelationProperties a b, Ord a) =>
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
prop_predicate_unions Set IntervalRelation
withinRelations Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
within
prop_enclosedBy_predicate :: (Ord a) =>
Interval a
-> Interval a
-> Property
prop_enclosedBy_predicate = Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
forall a b.
(IntervalRelationProperties a b, Ord a) =>
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
prop_predicate_unions Set IntervalRelation
withinRelations Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
enclosedBy
prop_encloses_predicate :: (Ord a) =>
Interval a
-> Interval a
-> Property
prop_encloses_predicate = Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
forall a b.
(IntervalRelationProperties a b, Ord a) =>
Set IntervalRelation
-> (Interval a -> Interval a -> Bool)
-> Interval a
-> Interval a
-> Property
prop_predicate_unions (Set IntervalRelation -> Set IntervalRelation
converse Set IntervalRelation
withinRelations) Interval a -> Interval a -> Bool
forall a (i0 :: * -> *) (i1 :: * -> *).
(Ord a, Intervallic i0, Intervallic i1) =>
ComparativePredicateOf2 (i0 a) (i1 a)
encloses
instance IntervalRelationProperties Int Int
instance IntervalRelationProperties Day Integer
instance IntervalRelationProperties UTCTime NominalDiffTime