{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE RankNTypes #-}
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
module Data.Functor.Contravariant.Coyoneda
( Coyoneda(..)
, liftCoyoneda
, lowerCoyoneda
, hoistCoyoneda
) where
import Control.Arrow
import Data.Functor.Contravariant
import Data.Functor.Contravariant.Adjunction
import Data.Functor.Contravariant.Rep
data Coyoneda f a where
Coyoneda :: (a -> b) -> f b -> Coyoneda f a
instance Contravariant (Coyoneda f) where
contramap :: (a -> b) -> Coyoneda f b -> Coyoneda f a
contramap a -> b
f (Coyoneda b -> b
g f b
m) = (a -> b) -> f b -> Coyoneda f a
forall a b (f :: * -> *). (a -> b) -> f b -> Coyoneda f a
Coyoneda (b -> b
g(b -> b) -> (a -> b) -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
.a -> b
f) f b
m
{-# INLINE contramap #-}
instance Representable f => Representable (Coyoneda f) where
type Rep (Coyoneda f) = Rep f
tabulate :: (a -> Rep (Coyoneda f)) -> Coyoneda f a
tabulate = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a)
-> ((a -> Rep f) -> f a) -> (a -> Rep f) -> Coyoneda f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Rep f) -> f a
forall (f :: * -> *) a. Representable f => (a -> Rep f) -> f a
tabulate
{-# INLINE tabulate #-}
index :: Coyoneda f a -> a -> Rep (Coyoneda f)
index (Coyoneda a -> b
ab f b
fb) a
a = f b -> b -> Rep f
forall (f :: * -> *) a. Representable f => f a -> a -> Rep f
index f b
fb (a -> b
ab a
a)
{-# INLINE index #-}
contramapWithRep :: (b -> Either a (Rep (Coyoneda f))) -> Coyoneda f a -> Coyoneda f b
contramapWithRep b -> Either a (Rep (Coyoneda f))
beav (Coyoneda a -> b
ac f b
fc) = (b -> Either b (Rep f)) -> f (Either b (Rep f)) -> Coyoneda f b
forall a b (f :: * -> *). (a -> b) -> f b -> Coyoneda f a
Coyoneda ((a -> b) -> Either a (Rep f) -> Either b (Rep f)
forall (a :: * -> * -> *) b c d.
ArrowChoice a =>
a b c -> a (Either b d) (Either c d)
left a -> b
ac (Either a (Rep f) -> Either b (Rep f))
-> (b -> Either a (Rep f)) -> b -> Either b (Rep f)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Either a (Rep f)
b -> Either a (Rep (Coyoneda f))
beav) ((Either b (Rep f) -> Either b (Rep f))
-> f b -> f (Either b (Rep f))
forall (f :: * -> *) b a.
Representable f =>
(b -> Either a (Rep f)) -> f a -> f b
contramapWithRep Either b (Rep f) -> Either b (Rep f)
forall a. a -> a
id f b
fc)
{-# INLINE contramapWithRep #-}
instance Adjunction f g => Adjunction (Coyoneda f) (Coyoneda g) where
leftAdjunct :: (b -> Coyoneda f a) -> a -> Coyoneda g b
leftAdjunct b -> Coyoneda f a
f = g b -> Coyoneda g b
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (g b -> Coyoneda g b) -> (a -> g b) -> a -> Coyoneda g b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> f a) -> a -> g b
forall (f :: * -> *) (g :: * -> *) b a.
Adjunction f g =>
(b -> f a) -> a -> g b
leftAdjunct (Coyoneda f a -> f a
forall (f :: * -> *) a. Contravariant f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda f a -> f a) -> (b -> Coyoneda f a) -> b -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Coyoneda f a
f)
{-# INLINE leftAdjunct #-}
rightAdjunct :: (a -> Coyoneda g b) -> b -> Coyoneda f a
rightAdjunct a -> Coyoneda g b
f = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> (b -> f a) -> b -> Coyoneda f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> g b) -> b -> f a
forall (f :: * -> *) (g :: * -> *) a b.
Adjunction f g =>
(a -> g b) -> b -> f a
rightAdjunct (Coyoneda g b -> g b
forall (f :: * -> *) a. Contravariant f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda g b -> g b) -> (a -> Coyoneda g b) -> a -> g b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda g b
f)
{-# INLINE rightAdjunct #-}
liftCoyoneda :: f a -> Coyoneda f a
liftCoyoneda :: f a -> Coyoneda f a
liftCoyoneda = (a -> a) -> f a -> Coyoneda f a
forall a b (f :: * -> *). (a -> b) -> f b -> Coyoneda f a
Coyoneda a -> a
forall a. a -> a
id
{-# INLINE liftCoyoneda #-}
lowerCoyoneda :: Contravariant f => Coyoneda f a -> f a
lowerCoyoneda :: Coyoneda f a -> f a
lowerCoyoneda (Coyoneda a -> b
f f b
m) = (a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f f b
m
{-# INLINE lowerCoyoneda #-}
hoistCoyoneda :: (forall a. f a -> g a) -> (Coyoneda f b -> Coyoneda g b)
hoistCoyoneda :: (forall a. f a -> g a) -> Coyoneda f b -> Coyoneda g b
hoistCoyoneda forall a. f a -> g a
f (Coyoneda b -> b
g f b
x) = (b -> b) -> g b -> Coyoneda g b
forall a b (f :: * -> *). (a -> b) -> f b -> Coyoneda f a
Coyoneda b -> b
g (f b -> g b
forall a. f a -> g a
f f b
x)
{-# INLINE hoistCoyoneda #-}