{-# language DataKinds #-}
{-# language KindSignatures #-}
{-# language PolyKinds #-}
{-# language TypeFamilies #-}
{-# language GADTs #-}
{-# language ConstraintKinds #-}
{-# language TypeOperators #-}
{-# language StandaloneDeriving #-}
{-# language FlexibleContexts #-}
{-# language UndecidableInstances #-}
{-# language MultiParamTypeClasses #-}
{-# language FlexibleInstances #-}
{-# language ExistentialQuantification #-}
{-# language DefaultSignatures #-}
{-# language ScopedTypeVariables #-}
{-# language TypeApplications #-}
{-# language AllowAmbiguousTypes #-}
{-# language QuantifiedConstraints #-}
module Generics.Kind (
module Data.PolyKinded
, module Data.PolyKinded.Atom
, (:+:)(..), (:*:)(..), V1, U1(..), M1(..)
, Field(..), (:=>:)(..), Exists(..)
, GenericK(..)
, GenericF, fromF, toF
, GenericN, fromN, toN
, fromRepK, toRepK, SubstRep
, Conv(..)
) where
import Data.PolyKinded
import Data.PolyKinded.Atom
import Data.Kind
import GHC.Generics.Extra hiding ((:=>:), SuchThat)
import qualified GHC.Generics.Extra as GG
newtype Field (t :: Atom d (*)) (x :: LoT d) where
Field :: { unField :: Interpret t x } -> Field t x
deriving instance Show (Interpret t x) => Show (Field t x)
data (:=>:) (c :: Atom d Constraint) (f :: LoT d -> *) (x :: LoT d) where
SuchThat :: Interpret c x => f x -> (c :=>: f) x
deriving instance (Interpret c x => Show (f x)) => Show ((c :=>: f) x)
data Exists k (f :: LoT (k -> d) -> *) (x :: LoT d) where
Exists :: forall (t :: k) d (f :: LoT (k -> d) -> *) (x :: LoT d)
.{ unExists :: f (t ':&&: x) } -> Exists k f x
deriving instance (forall t. Show (f (t ':&&: x))) => Show (Exists k f x)
class GenericK (f :: k) where
type RepK f :: LoT k -> *
fromK :: f :@@: x -> RepK f x
default
fromK :: (Generic (f :@@: x), Conv (Rep (f :@@: x)) (RepK f) x)
=> f :@@: x -> RepK f x
fromK = toKindGenerics . from
toK :: RepK f x -> f :@@: x
default
toK :: (Generic (f :@@: x), Conv (Rep (f :@@: x)) (RepK f) x)
=> RepK f x -> f :@@: x
toK = to . toGhcGenerics
type GenericF t f x = (GenericK f, x ~ (SplitF t f), t ~ (f :@@: x))
fromF :: forall f t x. GenericF t f x => t -> RepK f x
fromF = fromK @_ @f
toF :: forall f t x. GenericF t f x => RepK f x -> t
toF = toK @_ @f
type GenericN n t f x = (GenericK f, 'TyEnv f x ~ (SplitN n t), t ~ (f :@@: x))
fromN :: forall n t f x. GenericN n t f x => t -> RepK f x
fromN = fromK @_ @f
toN :: forall n t f x. GenericN n t f x => RepK f x -> t
toN = toK @_ @f
fromRepK :: forall f x xs. (GenericK f, SubstRep' (RepK f) x xs)
=> f x :@@: xs -> SubstRep (RepK f) x xs
fromRepK = substRep . fromK @_ @f @(x ':&&: xs)
toRepK :: forall f x xs. (GenericK f, SubstRep' (RepK f) x xs)
=> SubstRep (RepK f) x xs -> f x :@@: xs
toRepK = toK @_ @f @(x ':&&: xs) . unsubstRep
class SubstRep' (f :: LoT (t -> k) -> *) (x :: t) (xs :: LoT k) where
type family SubstRep f x :: LoT k -> *
substRep :: f (x ':&&: xs) -> SubstRep f x xs
unsubstRep :: SubstRep f x xs -> f (x ':&&: xs)
instance SubstRep' U1 x xs where
type SubstRep U1 x = U1
substRep U1 = U1
unsubstRep U1 = U1
instance (SubstRep' f x xs, SubstRep' g x xs) => SubstRep' (f :+: g) x xs where
type SubstRep (f :+: g) x = (SubstRep f x) :+: (SubstRep g x)
substRep (L1 x) = L1 (substRep x)
substRep (R1 x) = R1 (substRep x)
unsubstRep (L1 x) = L1 (unsubstRep x)
unsubstRep (R1 x) = R1 (unsubstRep x)
instance (SubstRep' f x xs, SubstRep' g x xs) => SubstRep' (f :*: g) x xs where
type SubstRep (f :*: g) x = (SubstRep f x) :*: (SubstRep g x)
substRep (x :*: y) = substRep x :*: substRep y
unsubstRep (x :*: y) = unsubstRep x :*: unsubstRep y
instance SubstRep' f x xs => SubstRep' (M1 i c f) x xs where
type SubstRep (M1 i c f) x = M1 i c (SubstRep f x)
substRep (M1 x) = M1 (substRep x)
unsubstRep (M1 x) = M1 (unsubstRep x)
instance (Interpret (SubstAtom c x) xs, Interpret c (x ':&&: xs), SubstRep' f x xs)
=> SubstRep' (c :=>: f) x xs where
type SubstRep (c :=>: f) x = (SubstAtom c x) :=>: (SubstRep f x)
substRep (SuchThat x) = SuchThat (substRep x)
unsubstRep (SuchThat x) = SuchThat (unsubstRep x)
instance (Interpret (SubstAtom t x) xs ~ Interpret t (x ':&&: xs))
=> SubstRep' (Field t) x xs where
type SubstRep (Field t) x = Field (SubstAtom t x)
substRep (Field x) = Field x
unsubstRep (Field x) = Field x
type family SubstAtom (f :: Atom (t -> k) d) (x :: t) :: Atom k d where
SubstAtom ('Var 'VZ) x = 'Kon x
SubstAtom ('Var ('VS v)) x = 'Var v
SubstAtom ('Kon t) x = 'Kon t
SubstAtom (t1 ':@: t2) x = (SubstAtom t1 x) ':@: (SubstAtom t2 x)
SubstAtom (t1 ':&: t2) x = (SubstAtom t1 x) ':&: (SubstAtom t2 x)
class Conv (gg :: * -> *) (kg :: LoT d -> *) (tys :: LoT d) where
toGhcGenerics :: kg tys -> gg a
toKindGenerics :: gg a -> kg tys
instance Conv U1 U1 tys where
toGhcGenerics U1 = U1
toKindGenerics U1 = U1
instance (Conv f f' tys, Conv g g' tys) => Conv (f :+: g) (f' :+: g') tys where
toGhcGenerics (L1 x) = L1 (toGhcGenerics x)
toGhcGenerics (R1 x) = R1 (toGhcGenerics x)
toKindGenerics (L1 x) = L1 (toKindGenerics x)
toKindGenerics (R1 x) = R1 (toKindGenerics x)
instance (Conv f f' tys, Conv g g' tys) => Conv (f :*: g) (f' :*: g') tys where
toGhcGenerics (x :*: y) = toGhcGenerics x :*: toGhcGenerics y
toKindGenerics (x :*: y) = toKindGenerics x :*: toKindGenerics y
instance {-# OVERLAPPABLE #-} (Conv f f' tys) => Conv (M1 i c f) f' tys where
toGhcGenerics x = M1 (toGhcGenerics x)
toKindGenerics (M1 x) = toKindGenerics x
instance {-# OVERLAPS #-} (Conv f f' tys) => Conv (M1 i c f) (M1 i c f') tys where
toGhcGenerics (M1 x) = M1 (toGhcGenerics x)
toKindGenerics (M1 x) = M1 (toKindGenerics x)
instance (k ~ Interpret t tys, Conv f f' tys)
=> Conv (k GG.:=>: f) (t :=>: f') tys where
toGhcGenerics (SuchThat x) = GG.SuchThat (toGhcGenerics x)
toKindGenerics (GG.SuchThat x) = SuchThat (toKindGenerics x)
instance (k ~ Interpret t tys) => Conv (K1 p k) (Field t) tys where
toGhcGenerics (Field x) = K1 x
toKindGenerics (K1 x) = Field x