Copyright | (c) Armando Santos 2019-2020 |
---|---|
Maintainer | armandoifsantos@gmail.com |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
The LAoP discipline generalises relations and functions treating them as Boolean matrices and in turn consider these as arrows.
LAoP is a library for algebraic (inductive) construction and manipulation of matrices in Haskell. See my Msc Thesis for the motivation behind the library, the underlying theory, and implementation details.
This module offers a newtype wrapper around Matrix
that
uses type level naturals instead of standard data types for the matrices
dimensions.
Synopsis
- newtype Matrix e (cols :: Nat) (rows :: Nat) = M (Matrix e (FromNat cols) (FromNat rows))
- type Countable a = KnownNat (Count a)
- type CountableDimensions a b = (Countable a, Countable b)
- type CountableN a = KnownNat (Count (FromNat a))
- type CountableNz a = KnownNat (Count (Normalize a))
- type CountableDimensionsN a b = (CountableN a, CountableN b)
- type FromListsN e a b = FromLists e (FromNat a) (FromNat b)
- type FromListsNz e a b = FromLists e (Normalize a) (Normalize b)
- type Liftable e a b = (Bounded a, Bounded b, Enum a, Enum b, Eq b, Num e, Ord e)
- type TrivialE a b = FromNat (a + b) ~ Either (FromNat a) (FromNat b)
- type TrivialP a b = FromNat (a * b) ~ FromNat (Count (FromNat a) * Count (FromNat b))
- empty :: Matrix e 0 0
- one :: e -> Matrix e 1 1
- junc :: TrivialE a b => Matrix e a rows -> Matrix e b rows -> Matrix e (a + b) rows
- split :: TrivialE a b => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a + b)
- type family FromNat (n :: Nat) :: Type where ...
- type family Count (d :: Type) :: Nat where ...
- type family Normalize (d :: Type) :: Type where ...
- class FromLists e cols rows
- fromLists :: FromListsN e cols rows => [[e]] -> Matrix e cols rows
- toLists :: Matrix e cols rows -> [[e]]
- toList :: Matrix e cols rows -> [e]
- matrixBuilder :: (FromListsN e cols rows, CountableN cols, CountableN rows) => ((Int, Int) -> e) -> Matrix e cols rows
- row :: FromLists e (FromNat cols) () => [e] -> Matrix e cols 1
- col :: FromLists e () (FromNat rows) => [e] -> Matrix e 1 rows
- zeros :: (Num e, FromListsN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows
- ones :: (Num e, FromListsN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows
- bang :: forall e cols. (Num e, Enum e, FromLists e (FromNat cols) (), CountableN cols) => Matrix e cols 1
- constant :: (Num e, FromListsN e cols rows, CountableN cols, CountableN rows) => e -> Matrix e cols rows
- columns :: CountableN cols => Matrix e cols rows -> Int
- rows :: CountableN rows => Matrix e cols rows -> Int
- tr :: Matrix e cols rows -> Matrix e rows cols
- select :: (Num e, FromListsN e rows1 rows1, CountableN rows1, FromNat rows2 ~ FromNat rows1, FromNat cols1 ~ FromNat cols2, FromNat rows3 ~ Either (FromNat cols3) (FromNat rows1)) => Matrix e cols1 rows3 -> Matrix e cols3 rows1 -> Matrix e cols2 rows2
- cond :: (FromNat (Count (FromNat cols)) ~ FromNat cols, CountableN cols, FromLists e () (FromNat cols), FromLists e (FromNat cols) (), FromListsN e cols cols, Liftable e a Bool) => (a -> Bool) -> Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows
- abideJS :: Matrix e cols rows -> Matrix e cols rows
- abideSJ :: Matrix e cols rows -> Matrix e cols rows
- (===) :: TrivialE a b => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a + b)
- p1 :: (Num e, CountableDimensionsN n m, FromListsN e n m, FromListsN e m m, TrivialE m n) => Matrix e (m + n) m
- p2 :: (Num e, CountableDimensionsN n m, FromListsN e m n, FromListsN e n n, TrivialE m n) => Matrix e (m + n) n
- (|||) :: TrivialE a b => Matrix e a rows -> Matrix e b rows -> Matrix e (a + b) rows
- i1 :: (Num e, CountableDimensionsN n rows, FromListsN e n rows, FromListsN e rows rows, TrivialE rows n) => Matrix e rows (rows + n)
- i2 :: (Num e, CountableDimensionsN rows m, FromListsN e m rows, FromListsN e rows rows, TrivialE m rows) => Matrix e rows (m + rows)
- (-|-) :: (Num e, CountableDimensionsN j k, FromListsN e k k, FromListsN e j k, FromListsN e k j, FromListsN e j j, TrivialE n m, TrivialE k j) => Matrix e n k -> Matrix e m j -> Matrix e (n + m) (k + j)
- (><) :: forall e m p n q. (Num e, CountableDimensionsN m n, CountableDimensionsN p q, CountableDimensionsN (m * n) (p * q), FromListsN e (m * n) m, FromListsN e (m * n) n, FromListsN e (p * q) p, FromListsN e (p * q) q, TrivialP m n, TrivialP p q) => Matrix e m p -> Matrix e n q -> Matrix e (m * n) (p * q)
- kp1 :: forall e m k. (Num e, CountableDimensionsN m k, CountableN (m * k), FromListsN e (m * k) m, TrivialP m k) => Matrix e (m * k) m
- kp2 :: forall e m k. (Num e, CountableDimensionsN k m, FromListsN e (m * k) k, CountableN (m * k), TrivialP m k) => Matrix e (m * k) k
- khatri :: forall e cols a b. (Num e, CountableDimensionsN a b, CountableN (a * b), FromListsN e (a * b) a, FromListsN e (a * b) b, TrivialP a b) => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a * b)
- identity :: (Num e, FromListsN e cols cols, CountableN cols) => Matrix e cols cols
- comp :: Num e => Matrix e cr rows -> Matrix e cols cr -> Matrix e cols rows
- fromF :: (Liftable e a b, CountableN cols, CountableN rows, FromListsN e rows cols) => (a -> b) -> Matrix e cols rows
- fromF' :: (Liftable e a b, CountableNz a, CountableNz b, FromListsNz e b a) => (a -> b) -> Matrix e (Count a) (Count b)
- pretty :: (CountableN cols, Show e) => Matrix e cols rows -> String
- prettyPrint :: (CountableN cols, Show e) => Matrix e cols rows -> IO ()
Documentation
LAoP (Linear Algebra of Programming) Inductive Matrix definition.
LAoP generalises relations and functions treating them as Boolean matrices and in turn consider these as arrows. This library offers many of the combinators mentioned in the work of Macedo (2012) and Oliveira (2012).
This definition is a wrapper around Type
but
dimensions are type level Naturals. Type inference might not
be as desired.
There exists two type families that make it easier to write
matrix dimensions: FromNat
and Count
. This approach
leads to a very straightforward implementation
of LAoP combinators.
Type safe matrix representation
newtype Matrix e (cols :: Nat) (rows :: Nat) Source #
Instances
Num e => Category (Matrix e :: Nat -> Nat -> Type) Source # | It isn't possible to implement the Please use |
Eq e => Eq (Matrix e cols rows) Source # | |
Num e => Num (Matrix e cols rows) Source # | |
Defined in LAoP.Matrix.Nat (+) :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # (-) :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # (*) :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # negate :: Matrix e cols rows -> Matrix e cols rows # abs :: Matrix e cols rows -> Matrix e cols rows # signum :: Matrix e cols rows -> Matrix e cols rows # fromInteger :: Integer -> Matrix e cols rows # | |
Ord e => Ord (Matrix e cols rows) Source # | |
Defined in LAoP.Matrix.Nat compare :: Matrix e cols rows -> Matrix e cols rows -> Ordering # (<) :: Matrix e cols rows -> Matrix e cols rows -> Bool # (<=) :: Matrix e cols rows -> Matrix e cols rows -> Bool # (>) :: Matrix e cols rows -> Matrix e cols rows -> Bool # (>=) :: Matrix e cols rows -> Matrix e cols rows -> Bool # max :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # min :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # | |
Show e => Show (Matrix e cols rows) Source # | |
NFData e => NFData (Matrix e cols rows) Source # | |
Defined in LAoP.Matrix.Nat |
Constraint type synonyms
type Countable a = KnownNat (Count a) Source #
Constraint type synonyms to keep the type signatures less convoluted
type CountableDimensions a b = (Countable a, Countable b) Source #
type CountableDimensionsN a b = (CountableN a, CountableN b) Source #
Primitives
Auxiliary type families
type family FromNat (n :: Nat) :: Type where ... Source #
Type family that computes of a given type dimension from a given natural
Thanks to Li-Yao Xia this type family is super fast.
type family Count (d :: Type) :: Nat where ... Source #
Type family that computes the cardinality of a given type dimension.
It can also count the cardinality of custom types that implement the
Generic
instance.
Count (Natural n m) = (m - n) + 1 | |
Count (List a) = (^) 2 (Count a) | |
Count (Either a b) = (+) (Count a) (Count b) | |
Count (a, b) = * (Count a) (Count b) | |
Count (a -> b) = (^) (Count b) (Count a) | |
Count (M1 _ _ f p) = Count (f p) | |
Count (K1 _ _ _) = 1 | |
Count (V1 _) = 0 | |
Count (U1 _) = 1 | |
Count ((:*:) a b p) = Count (a p) * Count (b p) | |
Count ((:+:) a b p) = Count (a p) + Count (b p) | |
Count d = Count (Rep d R) |
type family Normalize (d :: Type) :: Type where ... Source #
Type family that normalizes the representation of a given data structure
Matrix construction and conversion
class FromLists e cols rows Source #
Type class for defining the fromList
conversion function.
Given that it is not possible to branch on types at the term level type classes are needed bery much like an inductive definition but on types.
Instances
FromLists e () () Source # | |
Defined in LAoP.Matrix.Internal | |
FromLists e Void Void Source # | |
(FromLists e () a, FromLists e () b, Countable a) => FromLists e () (Either a b) Source # | |
FromLists e () rows => FromLists e () (Either () rows) Source # | |
(FromLists e a (), FromLists e b (), Countable a) => FromLists e (Either a b) () Source # | |
FromLists e cols () => FromLists e (Either () cols) () Source # | |
(FromLists e (Either a b) c, FromLists e (Either a b) d, Countable c) => FromLists e (Either a b) (Either c d) Source # | |
fromLists :: FromListsN e cols rows => [[e]] -> Matrix e cols rows Source #
matrixBuilder :: (FromListsN e cols rows, CountableN cols, CountableN rows) => ((Int, Int) -> e) -> Matrix e cols rows Source #
zeros :: (Num e, FromListsN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows Source #
ones :: (Num e, FromListsN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows Source #
bang :: forall e cols. (Num e, Enum e, FromLists e (FromNat cols) (), CountableN cols) => Matrix e cols 1 Source #
constant :: (Num e, FromListsN e cols rows, CountableN cols, CountableN rows) => e -> Matrix e cols rows Source #
Misc
Get dimensions
Matrix Transposition
Selective operator
select :: (Num e, FromListsN e rows1 rows1, CountableN rows1, FromNat rows2 ~ FromNat rows1, FromNat cols1 ~ FromNat cols2, FromNat rows3 ~ Either (FromNat cols3) (FromNat rows1)) => Matrix e cols1 rows3 -> Matrix e cols3 rows1 -> Matrix e cols2 rows2 Source #
McCarthy's Conditional
cond :: (FromNat (Count (FromNat cols)) ~ FromNat cols, CountableN cols, FromLists e () (FromNat cols), FromLists e (FromNat cols) (), FromListsN e cols cols, Liftable e a Bool) => (a -> Bool) -> Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows Source #
Matrix "abiding"
Biproduct approach
Split
(===) :: TrivialE a b => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a + b) infixl 2 Source #
Projections
p1 :: (Num e, CountableDimensionsN n m, FromListsN e n m, FromListsN e m m, TrivialE m n) => Matrix e (m + n) m Source #
p2 :: (Num e, CountableDimensionsN n m, FromListsN e m n, FromListsN e n n, TrivialE m n) => Matrix e (m + n) n Source #
Junc
(|||) :: TrivialE a b => Matrix e a rows -> Matrix e b rows -> Matrix e (a + b) rows infixl 3 Source #
Injections
i1 :: (Num e, CountableDimensionsN n rows, FromListsN e n rows, FromListsN e rows rows, TrivialE rows n) => Matrix e rows (rows + n) Source #
i2 :: (Num e, CountableDimensionsN rows m, FromListsN e m rows, FromListsN e rows rows, TrivialE m rows) => Matrix e rows (m + rows) Source #
Bifunctors
(-|-) :: (Num e, CountableDimensionsN j k, FromListsN e k k, FromListsN e j k, FromListsN e k j, FromListsN e j j, TrivialE n m, TrivialE k j) => Matrix e n k -> Matrix e m j -> Matrix e (n + m) (k + j) infixl 5 Source #
Coproduct Bifunctor
(><) :: forall e m p n q. (Num e, CountableDimensionsN m n, CountableDimensionsN p q, CountableDimensionsN (m * n) (p * q), FromListsN e (m * n) m, FromListsN e (m * n) n, FromListsN e (p * q) p, FromListsN e (p * q) q, TrivialP m n, TrivialP p q) => Matrix e m p -> Matrix e n q -> Matrix e (m * n) (p * q) infixl 4 Source #
Product Bifunctor (Kronecker)
Applicative matrix combinators
Note that given the restrictions imposed it is not possible to implement the standard type classes present in standard Haskell. *** Matrix pairing projections
kp1 :: forall e m k. (Num e, CountableDimensionsN m k, CountableN (m * k), FromListsN e (m * k) m, TrivialP m k) => Matrix e (m * k) m Source #
Khatri Rao Product and projections
kp2 :: forall e m k. (Num e, CountableDimensionsN k m, FromListsN e (m * k) k, CountableN (m * k), TrivialP m k) => Matrix e (m * k) k Source #
Matrix pairing
khatri :: forall e cols a b. (Num e, CountableDimensionsN a b, CountableN (a * b), FromListsN e (a * b) a, FromListsN e (a * b) b, TrivialP a b) => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a * b) Source #
Matrix composition and lifting
Arrow matrix combinators
Note that given the restrictions imposed it is not possible to implement the standard type classes present in standard Haskell.
identity :: (Num e, FromListsN e cols cols, CountableN cols) => Matrix e cols cols Source #
fromF :: (Liftable e a b, CountableN cols, CountableN rows, FromListsN e rows cols) => (a -> b) -> Matrix e cols rows Source #
fromF' :: (Liftable e a b, CountableNz a, CountableNz b, FromListsNz e b a) => (a -> b) -> Matrix e (Count a) (Count b) Source #
Matrix printing
prettyPrint :: (CountableN cols, Show e) => Matrix e cols rows -> IO () Source #