lapack-0.2.1: Numerical Linear Algebra using LAPACK

Safe HaskellNone

Numeric.LAPACK.Orthogonal.Householder

Synopsis

Documentation

data Householder vert horiz height width a Source

Instances

(Show height, Show width, Show a, Storable a, C height, C width, C vert, C horiz) => Show (Householder vert horiz height width a) 
(C vert, C horiz, C height, C width, Floating a) => Format (Householder vert horiz height width a) 

mapExtent :: (C vertA, C horizA) => (C vertB, C horizB) => Map vertA horizA vertB horizB height width -> Householder vertA horizA height width a -> Householder vertB horizB height width aSource

fromMatrix :: (C vert, C horiz, C height, C width, Floating a) => Full vert horiz height width a -> Householder vert horiz height width aSource

determinant :: (C sh, Floating a) => Square sh a -> aSource

determinantAbsolute :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> RealOf aSource

leastSquares :: (C vert, C horiz, C height, Eq height, C width, Eq width, C nrhs, Floating a) => Householder horiz Small height width a -> Full vert horiz height nrhs a -> Full vert horiz width nrhs aSource

minimumNorm :: (C vert, C horiz, C height, Eq height, C width, Eq width, C nrhs, Floating a) => Householder vert Small width height a -> Full vert horiz height nrhs a -> Full vert horiz width nrhs aSource

HH.minimumNorm (HH.fromMatrix a) b
==
Ortho.minimumNorm (adjoint a) b

extractQ :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> Square height aSource

extractR :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> Full vert horiz height width aSource

multiplyQ :: (C vertA, C horizA, C widthA, C vertB, C horizB, C widthB, C height, Eq height, Floating a) => Inversion -> Householder vertA horizA height widthA a -> Full vertB horizB height widthB a -> Full vertB horizB height widthB aSource

tallExtractQ :: (C vert, C height, C width, Floating a) => Householder vert Small height width a -> Full vert Small height width aSource

tallExtractR :: (C vert, C height, C width, Floating a) => Householder vert Small height width a -> Upper width aSource

tallMultiplyQ :: (C vert, C horiz, C height, Eq height, C width, C fuse, Eq fuse, Floating a) => Householder vert Small height fuse a -> Full vert horiz fuse width a -> Full vert horiz height width aSource

tallMultiplyQAdjoint :: (C vert, C horiz, C height, C width, C fuse, Eq fuse, Floating a) => Householder horiz Small fuse height a -> Full vert horiz fuse width a -> Full vert horiz height width aSource

tallMultiplyR :: (C vertA, C vert, C horiz, C height, Eq height, C heightA, C widthB, Floating a) => Transposition -> Householder vertA Small heightA height a -> Full vert horiz height widthB a -> Full vert horiz height widthB aSource

tallSolveR :: (C vertA, C vert, C horiz, C height, C width, Eq width, C nrhs, Floating a) => Transposition -> Conjugation -> Householder vertA Small height width a -> Full vert horiz width nrhs a -> Full vert horiz width nrhs aSource