{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
module Numeric.LAPACK.Matrix.Plain (
Full,
General, Tall, Wide,
ShapeInt, shapeInt,
transpose, adjoint,
Matrix.height, Matrix.width,
Basic.caseTallWide,
fromList,
mapExtent, fromFull,
tallFromGeneral, wideFromGeneral,
generalizeTall, generalizeWide,
mapHeight, mapWidth,
identity,
diagonal,
fromRowsNonEmpty, fromRowArray, fromRows,
fromRowsNonEmptyContainer, fromRowContainer,
fromColumnsNonEmpty, fromColumnArray, fromColumns,
fromColumnsNonEmptyContainer, fromColumnContainer,
Basic.singleRow, Basic.singleColumn,
Basic.flattenRow, Basic.flattenColumn,
Basic.liftRow, Basic.liftColumn,
Basic.unliftRow, Basic.unliftColumn,
toRows, toColumns,
toRowArray, toColumnArray,
toRowContainer, toColumnContainer,
takeRow, takeColumn,
Basic.takeRows, Basic.takeColumns, takeEqually,
Basic.dropRows, Basic.dropColumns, dropEqually,
Basic.takeTop, Basic.takeBottom,
Basic.takeLeft, Basic.takeRight,
takeRowArray, takeColumnArray,
swapRows, swapColumns,
reverseRows, reverseColumns,
fromRowMajor, toRowMajor,
forceOrder, adaptOrder,
(|*-),
tensorProduct,
outer,
kronecker,
sumRank1,
add, sub,
rowSums, columnSums,
rowArgAbsMaximums, columnArgAbsMaximums,
Basic.scaleRows, Basic.scaleColumns,
Basic.scaleRowsComplex, Basic.scaleColumnsComplex,
Basic.scaleRowsReal, Basic.scaleColumnsReal,
) where
import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape
import qualified Numeric.LAPACK.Matrix.Square.Basic as Square
import qualified Numeric.LAPACK.Matrix.Extent.Private as Extent
import qualified Numeric.LAPACK.Matrix.Basic as Basic
import qualified Numeric.LAPACK.Matrix.RowMajor as RowMajor
import qualified Numeric.LAPACK.Matrix.Private as Matrix
import qualified Numeric.LAPACK.Vector.Private as VectorPriv
import qualified Numeric.LAPACK.Vector as Vector
import Numeric.LAPACK.Matrix.Shape.Private
(Order(RowMajor, ColumnMajor), transposeFromOrder)
import Numeric.LAPACK.Matrix.Basic
(transpose, adjoint, forceOrder, forceRowMajor)
import Numeric.LAPACK.Matrix.Private
(Full, Tall, Wide, General, ShapeInt, shapeInt,
mapExtent, fromFull, generalizeTall, generalizeWide)
import Numeric.LAPACK.Matrix.Modifier (Conjugation(NonConjugated,Conjugated))
import Numeric.LAPACK.Vector (Vector)
import Numeric.LAPACK.Scalar (zero, one)
import Numeric.LAPACK.Private (pointerSeq, fill, copySubMatrix, copyBlock)
import qualified Numeric.LAPACK.FFI.Generic as LapackGen
import qualified Numeric.BLAS.FFI.Generic as BlasGen
import qualified Numeric.Netlib.Utility as Call
import qualified Numeric.Netlib.Class as Class
import qualified Data.Array.Comfort.Boxed as BoxedArray
import qualified Data.Array.Comfort.Storable.Unchecked.Monadic as ArrayIO
import qualified Data.Array.Comfort.Storable.Unchecked as Array
import qualified Data.Array.Comfort.Storable as CheckedArray
import qualified Data.Array.Comfort.Container as Container
import qualified Data.Array.Comfort.Shape as Shape
import Data.Array.Comfort.Storable.Unchecked (Array(Array))
import Foreign.Marshal.Array (advancePtr, pokeArray)
import Foreign.ForeignPtr (withForeignPtr)
import Foreign.Storable (Storable, poke, peekElemOff)
import Control.Monad.Trans.Cont (ContT(ContT), evalContT)
import Control.Monad.IO.Class (liftIO)
import Control.Monad (when, mfilter)
import Control.Applicative ((<$>))
import qualified Data.NonEmpty.Mixed as NonEmptyM
import qualified Data.NonEmpty as NonEmpty
import qualified Data.Foldable as Fold
import Data.Foldable (forM_)
import Data.Maybe (listToMaybe)
import Data.Bool.HT (if')
fromList ::
(Shape.C height, Shape.C width, Storable a) =>
height -> width -> [a] -> General height width a
fromList height width =
CheckedArray.fromList (MatrixShape.general RowMajor height width)
tallFromGeneral ::
(Shape.C height, Shape.C width, Storable a) =>
General height width a -> Tall height width a
tallFromGeneral =
Array.mapShape $ \(MatrixShape.Full order extent) ->
uncurry (MatrixShape.tall order) (Extent.dimensions extent)
wideFromGeneral ::
(Shape.C height, Shape.C width, Storable a) =>
General height width a -> Wide height width a
wideFromGeneral =
Array.mapShape $ \(MatrixShape.Full order extent) ->
uncurry (MatrixShape.wide order) (Extent.dimensions extent)
identity ::
(Shape.C sh, Class.Floating a) =>
sh -> General sh sh a
identity = Square.toFull . Square.identity
diagonal ::
(Shape.C sh, Class.Floating a) =>
Vector sh a -> General sh sh a
diagonal = Square.toFull . Square.diagonal
mapHeight ::
(Shape.C heightA, Shape.C heightB,
Extent.GeneralTallWide vert horiz,
Extent.GeneralTallWide horiz vert) =>
(heightA -> heightB) ->
Full vert horiz heightA width a ->
Full vert horiz heightB width a
mapHeight f = Basic.mapHeight $ MatrixShape.mapChecked "mapHeight" f
mapWidth ::
(Shape.C widthA, Shape.C widthB,
Extent.GeneralTallWide vert horiz,
Extent.GeneralTallWide horiz vert) =>
(widthA -> widthB) ->
Full vert horiz height widthA a ->
Full vert horiz height widthB a
mapWidth f = Basic.mapWidth $ MatrixShape.mapChecked "mapWidth" f
fromRowsNonEmpty ::
(Shape.C width, Eq width, Storable a) =>
NonEmpty.T [] (Vector width a) -> General ShapeInt width a
fromRowsNonEmpty (NonEmpty.Cons row rows) =
fromRows (Array.shape row) (row:rows)
fromRowArray ::
(Shape.C height, Shape.C width, Eq width, Storable a) =>
width -> BoxedArray.Array height (Vector width a) -> General height width a
fromRowArray width rows =
Basic.mapHeight (const $ BoxedArray.shape rows) $
fromRows width $ BoxedArray.toList rows
fromRowsNonEmptyContainer ::
(f ~ NonEmpty.T g, Container.C g,
Shape.C width, Eq width, Storable a) =>
f (Vector width a) -> General (Container.Shape f) width a
fromRowsNonEmptyContainer rows =
fromRowContainer (Array.shape $ NonEmpty.head rows) rows
fromRowContainer ::
(Container.C f, Shape.C width, Eq width, Storable a) =>
width -> f (Vector width a) -> General (Container.Shape f) width a
fromRowContainer width rows =
Basic.mapHeight (const $ Container.toShape rows) $
fromRows width $ Fold.toList rows
fromRows ::
(Shape.C width, Eq width, Storable a) =>
width -> [Vector width a] -> General ShapeInt width a
fromRows width = fromRowMajor . RowMajor.fromRows width
fromColumnsNonEmpty ::
(Shape.C height, Eq height, Storable a) =>
NonEmpty.T [] (Vector height a) -> General height ShapeInt a
fromColumnsNonEmpty (NonEmpty.Cons column columns) =
fromColumns (Array.shape column) (column:columns)
fromColumnArray ::
(Shape.C height, Eq height, Shape.C width, Storable a) =>
height -> BoxedArray.Array width (Vector height a) -> General height width a
fromColumnArray height columns =
Basic.mapWidth (const $ BoxedArray.shape columns) $
fromColumns height $ BoxedArray.toList columns
fromColumnsNonEmptyContainer ::
(f ~ NonEmpty.T g, Container.C g,
Shape.C height, Eq height, Storable a) =>
f (Vector height a) -> General height (Container.Shape f) a
fromColumnsNonEmptyContainer columns =
fromColumnContainer (Array.shape $ NonEmpty.head columns) columns
fromColumnContainer ::
(Shape.C height, Eq height, Container.C f, Storable a) =>
height -> f (Vector height a) -> General height (Container.Shape f) a
fromColumnContainer height columns =
Basic.mapWidth (const $ Container.toShape columns) $
fromColumns height $ Fold.toList columns
fromColumns ::
(Shape.C height, Eq height, Storable a) =>
height -> [Vector height a] -> General height ShapeInt a
fromColumns height = transpose . fromRowMajor . RowMajor.fromRows height
toRows ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> [Vector width a]
toRows a =
let ad = Basic.mapHeight Shape.Deferred $ fromFull a
in map (takeRow ad) $ Shape.indices $ Matrix.height ad
toColumns ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> [Vector height a]
toColumns a =
let ad = Basic.mapWidth Shape.Deferred $ fromFull a
in map (takeColumn ad) $ Shape.indices $ Matrix.width ad
toRowArray ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> BoxedArray.Array height (Vector width a)
toRowArray a = BoxedArray.fromList (Matrix.height a) (toRows a)
toColumnArray ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> BoxedArray.Array width (Vector height a)
toColumnArray a = BoxedArray.fromList (Matrix.width a) (toColumns a)
toRowContainer ::
(Extent.C vert, Extent.C horiz,
Container.C f, Shape.C width, Class.Floating a) =>
Full vert horiz (Container.Shape f) width a -> f (Vector width a)
toRowContainer a = Container.fromList (Matrix.height a) (toRows a)
toColumnContainer ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Container.C f, Class.Floating a) =>
Full vert horiz height (Container.Shape f) a -> f (Vector height a)
toColumnContainer a = Container.fromList (Matrix.width a) (toColumns a)
takeRow ::
(Extent.C vert, Extent.C horiz,
Shape.Indexed height, Shape.C width, Shape.Index height ~ ix,
Class.Floating a) =>
Full vert horiz height width a -> ix -> Vector width a
takeRow x ix =
either (RowMajor.takeRow ix) (RowMajor.takeColumn ix) $
Matrix.revealOrder x
takeColumn ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.Indexed width, Shape.Index width ~ ix,
Class.Floating a) =>
Full vert horiz height width a -> ix -> Vector height a
takeColumn x ix =
either (RowMajor.takeColumn ix) (RowMajor.takeRow ix) $
Matrix.revealOrder x
takeEqually ::
(Extent.C vert, Extent.C horiz, Class.Floating a) =>
Int ->
Full vert horiz ShapeInt ShapeInt a ->
Full vert horiz ShapeInt ShapeInt a
takeEqually k (Array (MatrixShape.Full order extentA) a) =
let (Shape.ZeroBased heightA, Shape.ZeroBased widthA) =
Extent.dimensions extentA
heightB = min k heightA
widthB = min k widthA
extentB =
Extent.reduceConsistent
(Shape.ZeroBased heightB) (Shape.ZeroBased widthB) extentA
in if' (k<0) (error "take: negative number") $
Array.unsafeCreate (MatrixShape.Full order extentB) $ \bPtr ->
withForeignPtr a $ \aPtr ->
case order of
RowMajor -> copySubMatrix widthB heightB widthA aPtr widthB bPtr
ColumnMajor -> copySubMatrix heightB widthB heightA aPtr heightB bPtr
dropEqually ::
(Extent.C vert, Extent.C horiz, Class.Floating a) =>
Int ->
Full vert horiz ShapeInt ShapeInt a ->
Full vert horiz ShapeInt ShapeInt a
dropEqually k (Array (MatrixShape.Full order extentA) a) =
let (Shape.ZeroBased heightA, Shape.ZeroBased widthA) =
Extent.dimensions extentA
heightB = heightA - top; top = min k heightA
widthB = widthA - left; left = min k widthA
extentB =
Extent.reduceConsistent
(Shape.ZeroBased heightB) (Shape.ZeroBased widthB) extentA
in if' (k<0) (error "drop: negative number") $
Array.unsafeCreate (MatrixShape.Full order extentB) $ \bPtr ->
withForeignPtr a $ \aPtr ->
case order of
RowMajor ->
copySubMatrix widthB heightB
widthA (advancePtr aPtr (top*widthA+left)) widthB bPtr
ColumnMajor ->
copySubMatrix heightB widthB
heightA (advancePtr aPtr (left*heightA+top)) heightB bPtr
swapRows ::
(Extent.C vert, Extent.C horiz,
Shape.Indexed height, Shape.C width, Class.Floating a) =>
Shape.Index height -> Shape.Index height ->
Full vert horiz height width a -> Full vert horiz height width a
swapRows i j (Array shape@(MatrixShape.Full order extent) a) =
Array.unsafeCreateWithSize shape $ \blockSize bPtr -> evalContT $ do
let (height,width) = Extent.dimensions extent
let m = Shape.size height
let n = Shape.size width
nPtr <- Call.cint n
aPtr <- ContT $ withForeignPtr a
let offsetI = Shape.offset height i
let offsetJ = Shape.offset height j
let (incVert,incHoriz) =
case order of
RowMajor -> (n,1)
ColumnMajor -> (1,m)
incPtr <- Call.cint incHoriz
liftIO $ do
copyBlock blockSize aPtr bPtr
when (offsetI/=offsetJ) $
BlasGen.swap nPtr
(advancePtr bPtr (incVert*offsetI)) incPtr
(advancePtr bPtr (incVert*offsetJ)) incPtr
swapColumns ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.Indexed width, Class.Floating a) =>
Shape.Index width -> Shape.Index width ->
Full vert horiz height width a -> Full vert horiz height width a
swapColumns i j = transpose . swapRows i j . transpose
reverseRows ::
(Extent.C vert, Extent.C horiz, Shape.C width, Class.Floating a) =>
Full vert horiz ShapeInt width a -> Full vert horiz ShapeInt width a
reverseRows (Array shape@(MatrixShape.Full order extent) a) =
Array.unsafeCreateWithSize shape $ \blockSize bPtr -> evalContT $ do
let (height,width) = Extent.dimensions extent
let n = Shape.size height
let m = Shape.size width
fwdPtr <- Call.bool True
nPtr <- Call.cint n
mPtr <- Call.cint m
kPtr <- Call.allocaArray n
aPtr <- ContT $ withForeignPtr a
liftIO $ do
copyBlock blockSize aPtr bPtr
pokeArray kPtr $ take n $ iterate (subtract 1) $ fromIntegral n
case order of
RowMajor -> LapackGen.lapmt fwdPtr mPtr nPtr bPtr mPtr kPtr
ColumnMajor -> LapackGen.lapmr fwdPtr nPtr mPtr bPtr nPtr kPtr
reverseColumns ::
(Extent.C vert, Extent.C horiz, Shape.C height, Class.Floating a) =>
Full vert horiz height ShapeInt a -> Full vert horiz height ShapeInt a
reverseColumns = transpose . reverseRows . transpose
takeRowArray ::
(Shape.Indexed height, Shape.C width, Shape.C sh, Class.Floating a) =>
BoxedArray.Array sh (Shape.Index height) ->
General height width a -> General sh width a
takeRowArray ixs (Array (MatrixShape.Full order extent) a) =
let (heightA, width) = Extent.dimensions extent
heightB = BoxedArray.shape ixs
offsets = map (Shape.offset heightA) $ BoxedArray.toList ixs
startBlocks blocks = zip (scanl (+) 0 $ map fst blocks) blocks
ma = Shape.size heightA
mb = Shape.size heightB
n = Shape.size width
in Array.unsafeCreate (MatrixShape.general order heightB width) $ \bPtr ->
withForeignPtr a $ \aPtr ->
case order of
RowMajor -> do
forM_ (startBlocks $ chopRowBlocks offsets) $
\(dest, (numRows, (start,step))) ->
copySubMatrix n numRows
(step*n) (advancePtr aPtr (start*n))
n (advancePtr bPtr (dest*n))
ColumnMajor -> do
forM_ (startBlocks $ chopColumnBlocks offsets) $
\(dest, (numRows, start)) ->
copySubMatrix numRows n
ma (advancePtr aPtr start)
mb (advancePtr bPtr dest)
chopRowBlocks :: (Integral i) => [i] -> [(Int,(i,i))]
chopRowBlocks =
let go [] = []
go is@(i0:is0) =
case mfilter (i0<) $ listToMaybe is0 of
Nothing -> (1,(i0,0)) : go is0
Just i1 ->
let (consecutive,remainder) =
span (uncurry (==)) $ zip [i0,i1..] is
in (length consecutive, (i0,i1-i0)) : go (map snd remainder)
in go
chopColumnBlocks :: (Integral i) => [i] -> [(Int,i)]
chopColumnBlocks =
map (\is -> (length $ NonEmpty.flatten is, NonEmpty.head is)) .
NonEmptyM.groupBy (\i j -> i+1 == j)
takeColumnArray ::
(Shape.C height, Shape.Indexed width, Shape.C sh, Class.Floating a) =>
BoxedArray.Array sh (Shape.Index width) ->
General height width a -> General height sh a
takeColumnArray ixs = transpose . takeRowArray ixs . transpose
fromRowMajor ::
(Shape.C height, Shape.C width, Storable a) =>
Array (height,width) a -> General height width a
fromRowMajor = Array.mapShape (uncurry $ MatrixShape.general RowMajor)
toRowMajor ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> Array (height,width) a
toRowMajor =
Array.mapShape
(\shape -> (MatrixShape.fullHeight shape, MatrixShape.fullWidth shape)) .
forceRowMajor
adaptOrder ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width,
Class.Floating a) =>
Full vert horiz height width a ->
Full vert horiz height width a ->
Full vert horiz height width a
adaptOrder x = forceOrder (MatrixShape.fullOrder $ Array.shape x)
add, sub ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Eq height, Eq width,
Class.Floating a) =>
Full vert horiz height width a ->
Full vert horiz height width a ->
Full vert horiz height width a
add x y = Vector.add (adaptOrder y x) y
sub x y = Vector.sub (adaptOrder y x) y
rowSums ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> Vector height a
rowSums m = Basic.multiplyVectorUnchecked m $ Vector.one $ Matrix.width m
_rowSums ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> Vector height a
_rowSums (Array shape@(MatrixShape.Full order extent) a) =
Array.unsafeCreate (Extent.height extent) $ \yPtr -> do
let (m,n) = MatrixShape.dimensions shape
let lda = m
evalContT $ do
transPtr <- Call.char $ transposeFromOrder order
mPtr <- Call.cint m
nPtr <- Call.cint n
alphaPtr <- Call.number one
aPtr <- ContT $ withForeignPtr a
ldaPtr <- Call.leadingDim lda
xPtr <- Call.number one
incxPtr <- Call.cint 0
betaPtr <- Call.number zero
incyPtr <- Call.cint 1
liftIO $
BlasGen.gemv
transPtr mPtr nPtr alphaPtr aPtr ldaPtr
xPtr incxPtr betaPtr yPtr incyPtr
columnSums ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Class.Floating a) =>
Full vert horiz height width a -> Vector width a
columnSums m =
Basic.multiplyVectorUnchecked (transpose m) $ Vector.one $ Matrix.height m
rowArgAbsMaximums ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.InvIndexed width, Shape.Index width ~ ix, Storable ix,
Class.Floating a) =>
Full vert horiz height width a -> (Vector height ix, Vector height a)
rowArgAbsMaximums (Array (MatrixShape.Full order extent) a) =
let (height,width) = Extent.dimensions extent
in Array.unsafeCreateWithSizeAndResult height $ \m ixPtr ->
ArrayIO.unsafeCreate height $ \bPtr -> evalContT $ do
let n = Shape.size width
let (inca,incx) =
case order of
ColumnMajor -> (1,m)
RowMajor -> (n,1)
nPtr <- Call.cint n
aPtr <- ContT $ withForeignPtr a
incxPtr <- Call.cint incx
liftIO $ do
Call.assert "rowArgAbsMaximums: no columns" (n>0)
forM_ (take m $ zip (pointerSeq inca aPtr) $
zip (pointerSeq 1 ixPtr) (pointerSeq 1 bPtr)) $
\(aiPtr,(ixiPtr,biPtr)) -> do
ix <- pred . fromIntegral <$> VectorPriv.absMax nPtr aiPtr incxPtr
poke ixiPtr $ Shape.indexFromOffset width ix
poke biPtr =<< peekElemOff aiPtr (ix*incx)
columnArgAbsMaximums ::
(Extent.C vert, Extent.C horiz,
Shape.InvIndexed height, Shape.C width,
Shape.Index height ~ ix, Storable ix,
Class.Floating a) =>
Full vert horiz height width a -> (Vector width ix, Vector width a)
columnArgAbsMaximums = rowArgAbsMaximums . transpose
infixl 7 |*-
(|*-) ::
(Shape.C height, Shape.C width, Class.Floating a) =>
Vector height a -> Vector width a -> General height width a
(|*-) = tensorProduct RowMajor
tensorProduct ::
(Shape.C height, Shape.C width, Class.Floating a) =>
Order -> Vector height a -> Vector width a -> General height width a
tensorProduct = tensorProductAux NonConjugated
outer ::
(Shape.C height, Shape.C width, Class.Floating a) =>
Order -> Vector height a -> Vector width a -> General height width a
outer = tensorProductAux Conjugated
tensorProductAux ::
(Shape.C height, Shape.C width, Class.Floating a) =>
Conjugation -> Order ->
Vector height a -> Vector width a -> General height width a
tensorProductAux conjugated order x y =
case order of
ColumnMajor ->
transpose $
fromRowMajor $ RowMajor.tensorProduct (Right conjugated) y x
RowMajor -> fromRowMajor $ RowMajor.tensorProduct (Left conjugated) x y
kronecker ::
(Extent.C vert, Extent.C horiz,
Shape.C heightA, Shape.C widthA, Shape.C heightB, Shape.C widthB,
Class.Floating a) =>
Full vert horiz heightA widthA a ->
Full vert horiz heightB widthB a ->
Full vert horiz (heightA,heightB) (widthA,widthB) a
kronecker a b =
let MatrixShape.Full orderB extentB = Array.shape b
shc =
MatrixShape.Full orderB $
Extent.kronecker (MatrixShape.fullExtent $ Array.shape a) extentB
in either
(Array.reshape shc . RowMajor.kronecker a)
(Array.reshape shc . RowMajor.kronecker (transpose a)) $
Matrix.revealOrder b
sumRank1 ::
(Shape.C height, Eq height, Shape.C width, Eq width, Class.Floating a) =>
(height,width) ->
[(a, (Vector height a, Vector width a))] -> General height width a
sumRank1 (height,width) xys =
Array.unsafeCreateWithSize (MatrixShape.general ColumnMajor height width) $
\size aPtr ->
evalContT $ do
let m = Shape.size height
let n = Shape.size width
mPtr <- Call.cint m
nPtr <- Call.cint n
alphaPtr <- Call.alloca
incxPtr <- Call.cint 1
incyPtr <- Call.cint 1
ldaPtr <- Call.leadingDim m
liftIO $ do
fill zero size aPtr
forM_ xys $ \(alpha, (Array shX x, Array shY y)) ->
withForeignPtr x $ \xPtr ->
withForeignPtr y $ \yPtr -> do
Call.assert "Matrix.sumRank1: non-matching height" (height==shX)
Call.assert "Matrix.sumRank1: non-matching width" (width==shY)
poke alphaPtr alpha
BlasGen.gerc mPtr nPtr
alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr