lapack-0.3: Numerical Linear Algebra using LAPACK

Safe HaskellNone
LanguageHaskell98

Numeric.LAPACK.Singular

Synopsis

Documentation

values :: (C height, C width, Floating a) => General height width a -> Vector (Min height width) (RealOf a) Source #

valuesTall :: (C vert, C height, C width, Floating a) => Full vert Small height width a -> Vector width (RealOf a) Source #

valuesWide :: (C horiz, C height, C width, Floating a) => Full Small horiz height width a -> Vector height (RealOf a) Source #

decompose :: (C height, C width, Floating a) => General height width a -> (Square height a, Vector (Min height width) (RealOf a), Square width a) Source #

decomposeTall :: (C vert, C height, C width, Floating a) => Full vert Small height width a -> (Full vert Small height width a, Vector width (RealOf a), Square width a) Source #

let (u,s,vt) = Singular.decomposeTall a
in a  ==  u ##*# Matrix.scaleRowsReal s vt

decomposeWide :: (C horiz, C height, C width, Floating a) => Full Small horiz height width a -> (Square height a, Vector height (RealOf a), Full Small horiz height width a) Source #

let (u,s,vt) = Singular.decomposeWide a
in a  ==  u #*## Matrix.scaleRowsReal s vt

determinantAbsolute :: (C height, C width, Floating a) => General height width a -> RealOf a Source #

leastSquaresMinimumNormRCond :: (C vert, C horiz, C height, Eq height, C width, C nrhs, Floating a) => RealOf a -> Full horiz vert height width a -> Full vert horiz height nrhs a -> (Int, Full vert horiz width nrhs a) Source #

pseudoInverseRCond :: (C vert, C horiz, C height, Eq height, C width, Eq width, Floating a) => RealOf a -> Full vert horiz height width a -> (Int, Full horiz vert width height a) Source #

decomposePolar :: (C vert, C horiz, C height, Eq height, C width, Eq width, Floating a) => Full vert horiz height width a -> (Full vert horiz height width a, Hermitian width a) Source #

type family RealOf x Source #

Instances
type RealOf Double Source # 
Instance details

Defined in Numeric.LAPACK.Scalar

type RealOf Float Source # 
Instance details

Defined in Numeric.LAPACK.Scalar

type RealOf (Complex a) Source # 
Instance details

Defined in Numeric.LAPACK.Scalar

type RealOf (Complex a) = a