-- | See <https://en.wikipedia.org/wiki/Binary_relation#Properties>. -- -- Note that these properties do not exhaust all of the possibilities. -- -- For example, the relation \( y = x^2 \) is neither irreflexive, -- nor coreflexive, nor reflexive, since it contains the pairs -- \( (0, 0) \) and \( (2, 4) \), but not \( (2, 2) \). -- -- The latter two facts also rule out quasi-reflexivity. module Test.Relation.Reflexive where import Test.Util -- | \( \forall a: (a \# a) \) -- -- For example, ≥ is a reflexive relation but > is not. -- reflexive :: (r -> r -> Bool) -> (r -> Bool) reflexive (#) a = a # a -- | \( \forall a: \neg (a \# a) \) -- -- For example, > is an irreflexive relation, but ≥ is not. -- irreflexive :: (r -> r -> Bool) -> (r -> Bool) irreflexive (#) a = not $ a # a -- | \( \forall a, b: ((a \# b) \wedge (b \# a)) \Rightarrow (a \equiv b) \) -- -- For example, the relation over the integers in which each odd number is -- related to itself is a coreflexive relation. The equality relation is the -- only example of a relation that is both reflexive and coreflexive, and any -- coreflexive relation is a subset of the equality relation. -- coreflexive :: Eq r => (r -> r -> Bool) -> (r -> r -> Bool) coreflexive = coreflexive_on (==) -- | \( \forall a, b: ((a \# b) \wedge (b \# a)) \Rightarrow (a \doteq b) \) -- coreflexive_on :: (r -> r -> Bool) -> (r -> r -> Bool) -> (r -> r -> Bool) coreflexive_on (~~) (#) a b = (a # b) && (b # a) ==> (a ~~ b) -- | \( \forall a, b: (a \# b) \Rightarrow ((a \# a) \wedge (b \# b)) \) -- quasireflexive :: (r -> r -> Bool) -> (r -> r -> Bool) quasireflexive (#) a b = (a # b) ==> (a # a) && (b # b)