Portability | Rank2Types |
---|---|
Stability | provisional |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Safe Haskell | Trustworthy |
A
is a generalization of Setter
s t a bfmap
from Functor
. It allows you to map into a
structure and change out the contents, but it isn't strong enough to allow you to
enumerate those contents. Starting with
we monomorphize the type to obtain fmap
:: Functor
f => (a -> b) -> f a -> f b(a -> b) -> s -> t
and then decorate it with Identity
to obtain:
typeSetter
s t a b = (a ->Identity
b) -> s ->Identity
t
Every Traversal
is a valid Setter
, since Identity
is Applicative
.
Everything you can do with a Functor
, you can do with a Setter
. There
are combinators that generalize fmap
and (<$
).
- type Setter s t a b = forall f. Settable f => (a -> f b) -> s -> f t
- type Setter' s a = Setter s s a a
- type IndexedSetter i s t a b = forall f p. (Indexable i p, Settable f) => p a (f b) -> s -> f t
- type IndexedSetter' i s a = IndexedSetter i s s a a
- type ASetter s t a b = (a -> Mutator b) -> s -> Mutator t
- type ASetter' s a = ASetter s s a a
- type AnIndexedSetter i s t a b = Indexed i a (Mutator b) -> s -> Mutator t
- type AnIndexedSetter' i s a = AnIndexedSetter i s s a a
- type Setting p s t a b = p a (Mutator b) -> s -> Mutator t
- type Setting' p s a = Setting p s s a a
- sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Overloading p q f s t a b
- setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b
- cloneSetter :: ASetter s t a b -> Setter s t a b
- cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b
- cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b
- mapped :: Functor f => Setter (f a) (f b) a b
- lifted :: Monad m => Setter (m a) (m b) a b
- contramapped :: Contravariant f => Setter (f b) (f a) a b
- argument :: Profunctor p => Setter (p b r) (p a r) a b
- over :: Profunctor p => Setting p s t a b -> p a b -> s -> t
- set :: ASetter s t a b -> b -> s -> t
- (.~) :: ASetter s t a b -> b -> s -> t
- (%~) :: Profunctor p => Setting p s t a b -> p a b -> s -> t
- (+~) :: Num a => ASetter s t a a -> a -> s -> t
- (-~) :: Num a => ASetter s t a a -> a -> s -> t
- (*~) :: Num a => ASetter s t a a -> a -> s -> t
- (//~) :: Fractional a => ASetter s t a a -> a -> s -> t
- (^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t
- (^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t
- (**~) :: Floating a => ASetter s t a a -> a -> s -> t
- (||~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (<>~) :: Monoid a => ASetter s t a a -> a -> s -> t
- (&&~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (<.~) :: ASetter s t a b -> b -> s -> (b, t)
- (?~) :: ASetter s t a (Maybe b) -> b -> s -> t
- (<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t)
- assign :: MonadState s m => ASetter s s a b -> b -> m ()
- (.=) :: MonadState s m => ASetter s s a b -> b -> m ()
- (%=) :: (Profunctor p, MonadState s m) => Setting p s s a b -> p a b -> m ()
- (+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m ()
- (^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()
- (^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m ()
- (**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m ()
- (||=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (<>=) :: (MonadState s m, Monoid a) => ASetter' s a -> a -> m ()
- (&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (<.=) :: MonadState s m => ASetter s s a b -> b -> m b
- (?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m ()
- (<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b
- (<~) :: MonadState s m => ASetter s s a b -> m b -> m ()
- scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m ()
- passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a
- ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a
- censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a
- icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a
- set' :: ASetter' s a -> a -> s -> s
- imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b
- (%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- (%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- class (Applicative f, Distributive f, Traversable f) => Settable f
- data Mutator a
- mapOf :: Profunctor p => Setting p s t a b -> p a b -> s -> t
Setters
type Setter s t a b = forall f. Settable f => (a -> f b) -> s -> f tSource
The only LensLike
law that can apply to a Setter
l
is that
set
l y (set
l x a) ≡set
l y a
You can't view
a Setter
in general, so the other two laws are irrelevant.
However, two Functor
laws apply to a Setter
:
over
lid
≡id
over
l f.
over
l g ≡over
l (f.
g)
These can be stated more directly:
lpure
≡pure
l f.
untainted
.
l g ≡ l (f.
untainted
.
g)
You can compose a Setter
with a Lens
or a Traversal
using (.
) from the Prelude
and the result is always only a Setter
and nothing more.
>>>
over traverse f [a,b,c,d]
[f a,f b,f c,f d]
>>>
over _1 f (a,b)
(f a,b)
>>>
over (traverse._1) f [(a,b),(c,d)]
[(f a,b),(f c,d)]
>>>
over both f (a,b)
(f a,f b)
>>>
over (traverse.both) f [(a,b),(c,d)]
[(f a,f b),(f c,f d)]
type IndexedSetter i s t a b = forall f p. (Indexable i p, Settable f) => p a (f b) -> s -> f tSource
Every IndexedSetter
is a valid Setter
.
The Setter
laws are still required to hold.
type IndexedSetter' i s a = IndexedSetter i s s a aSource
typeIndexedSetter'
i =Simple
(IndexedSetter
i)
type AnIndexedSetter i s t a b = Indexed i a (Mutator b) -> s -> Mutator tSource
Running an IndexedSetter
instantiates it to a concrete type.
When consuming a setter directly to perform a mapping, you can use this type, but most user code will not need to use this type.
By choosing Mutator
rather than Identity
, we get nicer error messages.
type AnIndexedSetter' i s a = AnIndexedSetter i s s a aSource
typeAnIndexedSetter'
i =Simple
(AnIndexedSetter
i)
type Setting p s t a b = p a (Mutator b) -> s -> Mutator tSource
This is a convenient alias when defining highly polymorphic code that takes both
ASetter
and AnIndexedSetter
as appropriate. If a function takes this it is
expecting one of those two things based on context.
type Setting' p s a = Setting p s s a aSource
This is a convenient alias when defining highly polymorphic code that takes both
ASetter'
and AnIndexedSetter'
as appropriate. If a function takes this it is
expecting one of those two things based on context.
Building Setters
sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Overloading p q f s t a bSource
Build a Setter
, IndexedSetter
or IndexPreservingSetter
depending on your choice of Profunctor
.
sets
:: ((a -> b) -> s -> t) ->Setter
s t a b
setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a bSource
Build an index-preserving Setter
from a map-like function.
Your supplied function f
is required to satisfy:
fid
≡id
f g.
f h ≡ f (g.
h)
Equational reasoning:
setting
.
over
≡id
over
.
setting
≡id
Another way to view sets
is that it takes a "semantic editor combinator"
and transforms it into a Setter
.
setting
:: ((a -> b) -> s -> t) ->Setter
s t a b
cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a bSource
Build an IndexPreservingSetter
from any Setter
.
cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a bSource
Clone an IndexedSetter
.
Common Setters
mapped :: Functor f => Setter (f a) (f b) a bSource
This Setter
can be used to map over all of the values in a Functor
.
fmap
≡over
mapped
fmapDefault
≡over
traverse
(<$
) ≡set
mapped
>>>
over mapped f [a,b,c]
[f a,f b,f c]
>>>
over mapped (+1) [1,2,3]
[2,3,4]
>>>
set mapped x [a,b,c]
[x,x,x]
>>>
[[a,b],[c]] & mapped.mapped +~ x
[[a + x,b + x],[c + x]]
>>>
over (mapped._2) length [("hello","world"),("leaders","!!!")]
[("hello",5),("leaders",3)]
mapped
::Functor
f =>Setter
(f a) (f b) a b
If you want an IndexPreservingSetter
use
.
setting
fmap
lifted :: Monad m => Setter (m a) (m b) a bSource
This setter
can be used to modify all of the values in a Monad
.
You sometimes have to use this rather than mapped
-- due to
temporary insanity Functor
is not a superclass of Monad
.
liftM
≡over
lifted
>>>
over lifted f [a,b,c]
[f a,f b,f c]
>>>
set lifted b (Just a)
Just b
If you want an IndexPreservingSetter
use
.
setting
liftM
contramapped :: Contravariant f => Setter (f b) (f a) a bSource
This Setter
can be used to map over all of the inputs to a Contravariant
.
contramap
≡over
contramapped
>>>
getPredicate (over contramapped (*2) (Predicate even)) 5
True
>>>
getOp (over contramapped (*5) (Op show)) 100
"500"
>>>
Prelude.map ($ 1) $ over (mapped . wrapping Op . contramapped) (*12) [(*2),(+1),(^3)]
[24,13,1728]
argument :: Profunctor p => Setter (p b r) (p a r) a bSource
This Setter
can be used to map over the input of a Profunctor
.
The most common Profunctor
to use this with is (->)
.
>>>
(argument %~ f) g x
g (f x)
>>>
(argument %~ show) length [1,2,3]
7
>>>
(argument %~ f) h x y
h (f x) y
Map over the argument of the result of a function -- i.e., its second argument:
>>>
(mapped.argument %~ f) h x y
h x (f y)
argument
::Setter
(b -> r) (a -> r) a b
Functional Combinators
over :: Profunctor p => Setting p s t a b -> p a b -> s -> tSource
Modify the target of a Lens
or all the targets of a Setter
or Traversal
with a function.
fmap
≡over
mapped
fmapDefault
≡over
traverse
sets
.
over
≡id
over
.
sets
≡id
Given any valid Setter
l
, you can also rely on the law:
over
l f.
over
l g =over
l (f.
g)
e.g.
>>>
over mapped f (over mapped g [a,b,c]) == over mapped (f . g) [a,b,c]
True
Another way to view over
is to say that it transforms a Setter
into a
"semantic editor combinator".
>>>
over mapped f (Just a)
Just (f a)
>>>
over mapped (*10) [1,2,3]
[10,20,30]
>>>
over _1 f (a,b)
(f a,b)
>>>
over _1 show (10,20)
("10",20)
over
::Setter
s t a b -> (a -> b) -> s -> tover
::ASetter
s t a b -> (a -> b) -> s -> t
set :: ASetter s t a b -> b -> s -> tSource
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
with a constant value.
(<$
) ≡set
mapped
>>>
set _2 "hello" (1,())
(1,"hello")
>>>
set mapped () [1,2,3,4]
[(),(),(),()]
Note: Attempting to set
a Fold
or Getter
will fail at compile time with an
relatively nice error message.
set
::Setter
s t a b -> b -> s -> tset
::Iso
s t a b -> b -> s -> tset
::Lens
s t a b -> b -> s -> tset
::Traversal
s t a b -> b -> s -> t
(.~) :: ASetter s t a b -> b -> s -> tSource
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
with a constant value.
This is an infix version of set
, provided for consistency with (.=
).
f<$
a ≡mapped
.~
f$
a
>>>
(a,b,c,d) & _4 .~ e
(a,b,c,e)
>>>
(42,"world") & _1 .~ "hello"
("hello","world")
>>>
(a,b) & both .~ c
(c,c)
(.~
) ::Setter
s t a b -> b -> s -> t (.~
) ::Iso
s t a b -> b -> s -> t (.~
) ::Lens
s t a b -> b -> s -> t (.~
) ::Traversal
s t a b -> b -> s -> t
(%~) :: Profunctor p => Setting p s t a b -> p a b -> s -> tSource
Modifies the target of a Lens
or all of the targets of a Setter
or
Traversal
with a user supplied function.
This is an infix version of over
.
fmap
f ≡mapped
%~
ffmapDefault
f ≡traverse
%~
f
>>>
(a,b,c) & _3 %~ f
(a,b,f c)
>>>
(a,b) & both %~ f
(f a,f b)
>>>
_2 %~ length $ (1,"hello")
(1,5)
>>>
traverse %~ f $ [a,b,c]
[f a,f b,f c]
>>>
traverse %~ even $ [1,2,3]
[False,True,False]
>>>
traverse.traverse %~ length $ [["hello","world"],["!!!"]]
[[5,5],[3]]
(%~
) ::Setter
s t a b -> (a -> b) -> s -> t (%~
) ::Iso
s t a b -> (a -> b) -> s -> t (%~
) ::Lens
s t a b -> (a -> b) -> s -> t (%~
) ::Traversal
s t a b -> (a -> b) -> s -> t
(+~) :: Num a => ASetter s t a a -> a -> s -> tSource
Increment the target(s) of a numerically valued Lens
, Setter
or Traversal
.
>>>
(a,b) & _1 +~ c
(a + c,b)
>>>
(a,b) & both +~ c
(a + c,b + c)
>>>
(1,2) & _2 +~ 1
(1,3)
>>>
[(a,b),(c,d)] & traverse.both +~ e
[(a + e,b + e),(c + e,d + e)]
(+~
) ::Num
a =>Setter'
s a -> a -> s -> s (+~
) ::Num
a =>Iso'
s a -> a -> s -> s (+~
) ::Num
a =>Lens'
s a -> a -> s -> s (+~
) ::Num
a =>Traversal'
s a -> a -> s -> s
(-~) :: Num a => ASetter s t a a -> a -> s -> tSource
Decrement the target(s) of a numerically valued Lens
, Iso
, Setter
or Traversal
.
>>>
(a,b) & _1 -~ c
(a - c,b)
>>>
(a,b) & both -~ c
(a - c,b - c)
>>>
_1 -~ 2 $ (1,2)
(-1,2)
>>>
mapped.mapped -~ 1 $ [[4,5],[6,7]]
[[3,4],[5,6]]
(-~
) ::Num
a =>Setter'
s a -> a -> s -> s (-~
) ::Num
a =>Iso'
s a -> a -> s -> s (-~
) ::Num
a =>Lens'
s a -> a -> s -> s (-~
) ::Num
a =>Traversal'
s a -> a -> s -> s
(*~) :: Num a => ASetter s t a a -> a -> s -> tSource
Multiply the target(s) of a numerically valued Lens
, Iso
, Setter
or Traversal
.
>>>
(a,b) & _1 *~ c
(a * c,b)
>>>
(a,b) & both *~ c
(a * c,b * c)
>>>
(1,2) & _2 *~ 4
(1,8)
>>>
Just 24 & mapped *~ 2
Just 48
(*~
) ::Num
a =>Setter'
s a -> a -> s -> s (*~
) ::Num
a =>Iso'
s a -> a -> s -> s (*~
) ::Num
a =>Lens'
s a -> a -> s -> s (*~
) ::Num
a =>Traversal'
s a -> a -> s -> s
(//~) :: Fractional a => ASetter s t a a -> a -> s -> tSource
Divide the target(s) of a numerically valued Lens
, Iso
, Setter
or Traversal
.
>>>
(a,b) & _1 //~ c
(a / c,b)
>>>
(a,b) & both //~ c
(a / c,b / c)
>>>
("Hawaii",10) & _2 //~ 2
("Hawaii",5.0)
(//~
) ::Fractional
a =>Setter'
s a -> a -> s -> s (//~
) ::Fractional
a =>Iso'
s a -> a -> s -> s (//~
) ::Fractional
a =>Lens'
s a -> a -> s -> s (//~
) ::Fractional
a =>Traversal'
s a -> a -> s -> s
(^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> tSource
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to a non-negative integral power.
>>>
(1,3) & _2 ^~ 2
(1,9)
(^~
) :: (Num
a,Integral
e) =>Setter'
s a -> e -> s -> s (^~
) :: (Num
a,Integral
e) =>Iso'
s a -> e -> s -> s (^~
) :: (Num
a,Integral
e) =>Lens'
s a -> e -> s -> s (^~
) :: (Num
a,Integral
e) =>Traversal'
s a -> e -> s -> s
(^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> tSource
Raise the target(s) of a fractionally valued Lens
, Setter
or Traversal
to an integral power.
>>>
(1,2) & _2 ^^~ (-1)
(1,0.5)
(^^~
) :: (Fractional
a,Integral
e) =>Setter'
s a -> e -> s -> s (^^~
) :: (Fractional
a,Integral
e) =>Iso'
s a -> e -> s -> s (^^~
) :: (Fractional
a,Integral
e) =>Lens'
s a -> e -> s -> s (^^~
) :: (Fractional
a,Integral
e) =>Traversal'
s a -> e -> s -> s
(**~) :: Floating a => ASetter s t a a -> a -> s -> tSource
Raise the target(s) of a floating-point valued Lens
, Setter
or Traversal
to an arbitrary power.
>>>
(a,b) & _1 **~ c
(a**c,b)
>>>
(a,b) & both **~ c
(a**c,b**c)
>>>
_2 **~ pi $ (1,3)
(1,31.54428070019754)
(**~
) ::Floating
a =>Setter'
s a -> a -> s -> s (**~
) ::Floating
a =>Iso'
s a -> a -> s -> s (**~
) ::Floating
a =>Lens'
s a -> a -> s -> s (**~
) ::Floating
a =>Traversal'
s a -> a -> s -> s
(||~) :: ASetter s t Bool Bool -> Bool -> s -> tSource
Logically ||
the target(s) of a Bool
-valued Lens
or Setter
.
>>>
both ||~ True $ (False,True)
(True,True)
>>>
both ||~ False $ (False,True)
(False,True)
(||~
) ::Setter'
sBool
->Bool
-> s -> s (||~
) ::Iso'
sBool
->Bool
-> s -> s (||~
) ::Lens'
sBool
->Bool
-> s -> s (||~
) ::Traversal'
sBool
->Bool
-> s -> s
(<>~) :: Monoid a => ASetter s t a a -> a -> s -> tSource
Modify the target of a monoidally valued by mappend
ing another value.
>>>
(Sum a,b) & _1 <>~ Sum c
(Sum {getSum = a + c},b)
>>>
(Sum a,Sum b) & both <>~ Sum c
(Sum {getSum = a + c},Sum {getSum = b + c})
>>>
both <>~ "!!!" $ ("hello","world")
("hello!!!","world!!!")
(<>~
) ::Monoid
a =>Setter
s t a a -> a -> s -> t (<>~
) ::Monoid
a =>Iso
s t a a -> a -> s -> t (<>~
) ::Monoid
a =>Lens
s t a a -> a -> s -> t (<>~
) ::Monoid
a =>Traversal
s t a a -> a -> s -> t
(&&~) :: ASetter s t Bool Bool -> Bool -> s -> tSource
Logically &&
the target(s) of a Bool
-valued Lens
or Setter
.
>>>
both &&~ True $ (False, True)
(False,True)
>>>
both &&~ False $ (False, True)
(False,False)
(&&~
) ::Setter'
sBool
->Bool
-> s -> s (&&~
) ::Iso'
sBool
->Bool
-> s -> s (&&~
) ::Lens'
sBool
->Bool
-> s -> s (&&~
) ::Traversal'
sBool
->Bool
-> s -> s
(<.~) :: ASetter s t a b -> b -> s -> (b, t)Source
Set with pass-through.
This is mostly present for consistency, but may be useful for for chaining assignments.
If you do not need a copy of the intermediate result, then using l
directly is a good idea.
.~
t
>>>
(a,b) & _1 <.~ c
(c,(c,b))
>>>
("good","morning","vietnam") & _3 <.~ "world"
("world",("good","morning","world"))
>>>
(42,Map.fromList [("goodnight","gracie")]) & _2.at "hello" <.~ Just "world"
(Just "world",(42,fromList [("goodnight","gracie"),("hello","world")]))
(<.~
) ::Setter
s t a b -> b -> s -> (b, t) (<.~
) ::Iso
s t a b -> b -> s -> (b, t) (<.~
) ::Lens
s t a b -> b -> s -> (b, t) (<.~
) ::Traversal
s t a b -> b -> s -> (b, t)
(?~) :: ASetter s t a (Maybe b) -> b -> s -> tSource
Set the target of a Lens
, Traversal
or Setter
to Just
a value.
l?~
t ≡set
l (Just
t)
>>>
Nothing & id ?~ a
Just a
>>>
Map.empty & at 3 ?~ x
fromList [(3,x)]
(?~
) ::Setter
s t a (Maybe
b) -> b -> s -> t (?~
) ::Iso
s t a (Maybe
b) -> b -> s -> t (?~
) ::Lens
s t a (Maybe
b) -> b -> s -> t (?~
) ::Traversal
s t a (Maybe
b) -> b -> s -> t
(<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t)Source
Set to Just
a value with pass-through.
This is mostly present for consistency, but may be useful for for chaining assignments.
If you do not need a copy of the intermediate result, then using l
directly is a good idea.
?~
d
>>>
import Data.Map as Map
>>>
_2.at "hello" <?~ "world" $ (42,Map.fromList [("goodnight","gracie")])
("world",(42,fromList [("goodnight","gracie"),("hello","world")]))
(<?~
) ::Setter
s t a (Maybe
b) -> b -> s -> (b, t) (<?~
) ::Iso
s t a (Maybe
b) -> b -> s -> (b, t) (<?~
) ::Lens
s t a (Maybe
b) -> b -> s -> (b, t) (<?~
) ::Traversal
s t a (Maybe
b) -> b -> s -> (b, t)
State Combinators
assign :: MonadState s m => ASetter s s a b -> b -> m ()Source
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic
state with a new value, irrespective of the old.
This is an alias for (.=
).
>>>
execState (do assign _1 c; assign _2 d) (a,b)
(c,d)
>>>
execState (both .= c) (a,b)
(c,c)
assign
::MonadState
s m =>Iso'
s a -> a -> m ()assign
::MonadState
s m =>Lens'
s a -> a -> m ()assign
::MonadState
s m =>Traversal'
s a -> a -> m ()assign
::MonadState
s m =>Setter'
s a -> a -> m ()
(.=) :: MonadState s m => ASetter s s a b -> b -> m ()Source
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic state with a new value, irrespective of the
old.
This is an infix version of assign
.
>>>
execState (do _1 .= c; _2 .= d) (a,b)
(c,d)
>>>
execState (both .= c) (a,b)
(c,c)
(.=
) ::MonadState
s m =>Iso'
s a -> a -> m () (.=
) ::MonadState
s m =>Lens'
s a -> a -> m () (.=
) ::MonadState
s m =>Traversal'
s a -> a -> m () (.=
) ::MonadState
s m =>Setter'
s a -> a -> m ()
(%=) :: (Profunctor p, MonadState s m) => Setting p s s a b -> p a b -> m ()Source
Map over the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic state.
>>>
execState (do _1 %= f;_2 %= g) (a,b)
(f a,g b)
>>>
execState (do both %= f) (a,b)
(f a,f b)
(%=
) ::MonadState
s m =>Iso'
s a -> (a -> a) -> m () (%=
) ::MonadState
s m =>Lens'
s a -> (a -> a) -> m () (%=
) ::MonadState
s m =>Traversal'
s a -> (a -> a) -> m () (%=
) ::MonadState
s m =>Setter'
s a -> (a -> a) -> m ()
(%=
) ::MonadState
s m =>ASetter
s s a b -> (a -> b) -> m ()
(+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()Source
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by adding a value.
Example:
fresh
::MonadState
Int
m => mInt
fresh
= doid
+=
1use
id
>>>
execState (do _1 += c; _2 += d) (a,b)
(a + c,b + d)
>>>
execState (do _1.at 1.non 0 += 10) (Map.fromList [(2,100)],"hello")
(fromList [(1,10),(2,100)],"hello")
(+=
) :: (MonadState
s m,Num
a) =>Setter'
s a -> a -> m () (+=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m () (+=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m () (+=
) :: (MonadState
s m,Num
a) =>Traversal'
s a -> a -> m ()
(-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()Source
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by subtracting a value.
>>>
execState (do _1 -= c; _2 -= d) (a,b)
(a - c,b - d)
(-=
) :: (MonadState
s m,Num
a) =>Setter'
s a -> a -> m () (-=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m () (-=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m () (-=
) :: (MonadState
s m,Num
a) =>Traversal'
s a -> a -> m ()
(*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()Source
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by multiplying by value.
>>>
execState (do _1 *= c; _2 *= d) (a,b)
(a * c,b * d)
(*=
) :: (MonadState
s m,Num
a) =>Setter'
s a -> a -> m () (*=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m () (*=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m () (*=
) :: (MonadState
s m,Num
a) =>Traversal'
s a -> a -> m ()
(//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m ()Source
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by dividing by a value.
>>>
execState (do _1 //= c; _2 //= d) (a,b)
(a / c,b / d)
(//=
) :: (MonadState
s m,Fractional
a) =>Setter'
s a -> a -> m () (//=
) :: (MonadState
s m,Fractional
a) =>Iso'
s a -> a -> m () (//=
) :: (MonadState
s m,Fractional
a) =>Lens'
s a -> a -> m () (//=
) :: (MonadState
s m,Fractional
a) =>Traversal'
s a -> a -> m ()
(^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()Source
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to a non-negative integral power.
(^=
) :: (MonadState
s m,Num
a,Integral
e) =>Setter'
s a -> e -> m () (^=
) :: (MonadState
s m,Num
a,Integral
e) =>Iso'
s a -> e -> m () (^=
) :: (MonadState
s m,Num
a,Integral
e) =>Lens'
s a -> e -> m () (^=
) :: (MonadState
s m,Num
a,Integral
e) =>Traversal'
s a -> e -> m ()
(^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m ()Source
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to an integral power.
(^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Setter'
s a -> e -> m () (^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Iso'
s a -> e -> m () (^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Lens'
s a -> e -> m () (^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Traversal'
s a -> e -> m ()
(**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m ()Source
Raise the target(s) of a numerically valued Lens
, Setter
or Traversal
to an arbitrary power
>>>
execState (do _1 **= c; _2 **= d) (a,b)
(a**c,b**d)
(**=
) :: (MonadState
s m,Floating
a) =>Setter'
s a -> a -> m () (**=
) :: (MonadState
s m,Floating
a) =>Iso'
s a -> a -> m () (**=
) :: (MonadState
s m,Floating
a) =>Lens'
s a -> a -> m () (**=
) :: (MonadState
s m,Floating
a) =>Traversal'
s a -> a -> m ()
(||=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()Source
Modify the target(s) of a Lens'
, 'Iso, Setter
or Traversal
by taking their logical ||
with a value.
>>>
execState (do _1 ||= True; _2 ||= False; _3 ||= True; _4 ||= False) (True,True,False,False)
(True,True,True,False)
(||=
) ::MonadState
s m =>Setter'
sBool
->Bool
-> m () (||=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> m () (||=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> m () (||=
) ::MonadState
s m =>Traversal'
sBool
->Bool
-> m ()
(<>=) :: (MonadState s m, Monoid a) => ASetter' s a -> a -> m ()Source
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by mappend
ing a value.
>>>
execState (do _1 <>= Sum c; _2 <>= Product d) (Sum a,Product b)
(Sum {getSum = a + c},Product {getProduct = b * d})
>>>
execState (both <>= "!!!") ("hello","world")
("hello!!!","world!!!")
(<>=
) :: (MonadState
s m,Monoid
a) =>Setter'
s a -> a -> m () (<>=
) :: (MonadState
s m,Monoid
a) =>Iso'
s a -> a -> m () (<>=
) :: (MonadState
s m,Monoid
a) =>Lens'
s a -> a -> m () (<>=
) :: (MonadState
s m,Monoid
a) =>Traversal'
s a -> a -> m ()
(&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()Source
Modify the target(s) of a Lens'
, Iso
, Setter
or Traversal
by taking their logical &&
with a value.
>>>
execState (do _1 &&= True; _2 &&= False; _3 &&= True; _4 &&= False) (True,True,False,False)
(True,False,False,False)
(&&=
) ::MonadState
s m =>Setter'
sBool
->Bool
-> m () (&&=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> m () (&&=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> m () (&&=
) ::MonadState
s m =>Traversal'
sBool
->Bool
-> m ()
(<.=) :: MonadState s m => ASetter s s a b -> b -> m bSource
Set with pass-through
This is useful for chaining assignment without round-tripping through your Monad
stack.
do x <-_2
<.=
ninety_nine_bottles_of_beer_on_the_wall
If you do not need a copy of the intermediate result, then using l
will avoid unused binding warnings.
.=
d
(<.=
) ::MonadState
s m =>Setter
s s a b -> b -> m b (<.=
) ::MonadState
s m =>Iso
s s a b -> b -> m b (<.=
) ::MonadState
s m =>Lens
s s a b -> b -> m b (<.=
) ::MonadState
s m =>Traversal
s s a b -> b -> m b
(?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m ()Source
Replace the target of a Lens
or all of the targets of a Setter
or Traversal
in our monadic
state with Just
a new value, irrespective of the old.
>>>
execState (do at 1 ?= a; at 2 ?= b) Map.empty
fromList [(1,a),(2,b)]
>>>
execState (do _1 ?= b; _2 ?= c) (Just a, Nothing)
(Just b,Just c)
(?=
) ::MonadState
s m =>Iso'
s (Maybe
a) -> a -> m () (?=
) ::MonadState
s m =>Lens'
s (Maybe
a) -> a -> m () (?=
) ::MonadState
s m =>Traversal'
s (Maybe
a) -> a -> m () (?=
) ::MonadState
s m =>Setter'
s (Maybe
a) -> a -> m ()
(<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m bSource
Set Just
a value with pass-through
This is useful for chaining assignment without round-tripping through your Monad
stack.
do x <-at
foo<?=
ninety_nine_bottles_of_beer_on_the_wall
If you do not need a copy of the intermediate result, then using l
will avoid unused binding warnings.
?=
d
(<?=
) ::MonadState
s m =>Setter
s s a (Maybe
b) -> b -> m b (<?=
) ::MonadState
s m =>Iso
s s a (Maybe
b) -> b -> m b (<?=
) ::MonadState
s m =>Lens
s s a (Maybe
b) -> b -> m b (<?=
) ::MonadState
s m =>Traversal
s s a (Maybe
b) -> b -> m b
(<~) :: MonadState s m => ASetter s s a b -> m b -> m ()Source
Run a monadic action, and set all of the targets of a Lens
, Setter
or Traversal
to its result.
(<~
) ::MonadState
s m =>Iso
s s a b -> m b -> m () (<~
) ::MonadState
s m =>Lens
s s a b -> m b -> m () (<~
) ::MonadState
s m =>Traversal
s s a b -> m b -> m () (<~
) ::MonadState
s m =>Setter
s s a b -> m b -> m ()
As a reasonable mnemonic, this lets you store the result of a monadic action in a Lens
rather than
in a local variable.
do foo <- bar ...
will store the result in a variable, while
do foo <~
bar
...
Writer Combinators
scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m ()Source
Write to a fragment of a larger Writer
format.
passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m aSource
This is a generalization of pass
that alows you to modify just a
portion of the resulting MonadWriter
.
ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m aSource
This is a generalization of pass
that alows you to modify just a
portion of the resulting MonadWriter
with access to the index of an
IndexedSetter
.
censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m aSource
This is a generalization of censor
that alows you to censor
just a
portion of the resulting MonadWriter
.
icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m aSource
This is a generalization of censor
that alows you to censor
just a
portion of the resulting MonadWriter
, with access to the index of an
IndexedSetter
.
Simplified State Setting
set' :: ASetter' s a -> a -> s -> sSource
Replace the target of a Lens
or all of the targets of a Setter'
or Traversal
with a constant value, without changing its type.
This is a type restricted version of set
, which retains the type of the original.
>>>
set' mapped x [a,b,c,d]
[x,x,x,x]
>>>
set' _2 "hello" (1,"world")
(1,"hello")
>>>
set' mapped 0 [1,2,3,4]
[0,0,0,0]
Note: Attempting to adjust set'
a Fold
or Getter
will fail at compile time with an
relatively nice error message.
set'
::Setter'
s a -> a -> s -> sset'
::Iso'
s a -> a -> s -> sset'
::Lens'
s a -> a -> s -> sset'
::Traversal'
s a -> a -> s -> s
Indexed Setters
imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> tSource
Deprecated: Use iover
Map with index. (Deprecated alias for iover
).
When you do not need access to the index, then mapOf
is more liberal in what it can accept.
mapOf
l ≡imapOf
l.
const
imapOf
::IndexedSetter
i s t a b -> (i -> a -> b) -> s -> timapOf
::IndexedLens
i s t a b -> (i -> a -> b) -> s -> timapOf
::IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> t
iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> tSource
Map with index. This is an alias for imapOf
.
When you do not need access to the index, then over
is more liberal in what it can accept.
over
l ≡iover
l.
const
iover
l ≡over
l.
Indexed
iover
::IndexedSetter
i s t a b -> (i -> a -> b) -> s -> tiover
::IndexedLens
i s t a b -> (i -> a -> b) -> s -> tiover
::IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> t
isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a bSource
(%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> tSource
Adjust every target of an IndexedSetter
, IndexedLens
or IndexedTraversal
with access to the index.
(%@~
) ≡imapOf
When you do not need access to the index then (%@~
) is more liberal in what it can accept.
l%~
f ≡ l%@~
const
f
(%@~
) ::IndexedSetter
i s t a b -> (i -> a -> b) -> s -> t (%@~
) ::IndexedLens
i s t a b -> (i -> a -> b) -> s -> t (%@~
) ::IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> t
(%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()Source
Adjust every target in the current state of an IndexedSetter
, IndexedLens
or IndexedTraversal
with access to the index.
When you do not need access to the index then (%=
) is more liberal in what it can accept.
l%=
f ≡ l%@=
const
f
(%@=
) ::MonadState
s m =>IndexedSetter
i s s a b -> (i -> a -> b) -> m () (%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> b) -> m () (%@=
) ::MonadState
s m =>IndexedTraversal
i s t a b -> (i -> a -> b) -> m ()
Exported for legible error messages
class (Applicative f, Distributive f, Traversable f) => Settable f Source