Copyright | (C) 2012-15 Edward Kmett |
---|---|
License | BSD-style (see the file LICENSE) |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Stability | provisional |
Portability | Rank2Types |
Safe Haskell | Trustworthy |
Language | Haskell98 |
(The classes in here need to be defined together for DefaultSignatures
to work.)
- class Conjoined p => Indexable i p where
- indexed :: p a b -> i -> a -> b
- class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p) => Conjoined p where
- newtype Indexed i a b = Indexed {
- runIndexed :: i -> a -> b
- (<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r
- (<.>) :: Indexable (i, j) p => (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> p a b -> r
- (.>) :: (st -> r) -> (kab -> st) -> kab -> r
- selfIndex :: Indexable a p => p a fb -> a -> fb
- reindexed :: Indexable j p => (i -> j) -> (Indexed i a b -> r) -> p a b -> r
- icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r
- indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t
- indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t
- class Functor f => FunctorWithIndex i f | f -> i where
- imap :: (i -> a -> b) -> f a -> f b
- imapped :: IndexedSetter i (f a) (f b) a b
- class Foldable f => FoldableWithIndex i f | f -> i where
- iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- none :: Foldable f => (a -> Bool) -> f a -> Bool
- itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f ()
- ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f ()
- imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m ()
- iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m ()
- iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b]
- ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a)
- ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b
- ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b
- itoList :: FoldableWithIndex i f => f a -> [(i, a)]
- withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t)
- asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s)
- indices :: (Indexable i p, Applicative f) => (i -> Bool) -> Optical' p (Indexed i) f a a
- index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a
- class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i t | t -> i where
- itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b)
- itraversed :: IndexedTraversal i (t a) (t b) a b
- ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b)
- imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b)
- iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b)
- imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r
- ifoldMapByOf :: (forall s. IndexedGetting i (M r s) t a) -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r
Indexing
class Conjoined p => Indexable i p where Source
This class permits overloading of function application for things that also admit a notion of a key or index.
class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p) => Conjoined p where Source
This is a Profunctor
that is both Corepresentable
by f
and Representable
by g
such
that f
is left adjoint to g
. From this you can derive a lot of structure due
to the preservation of limits and colimits.
Nothing
distrib :: Functor f => p a b -> p (f a) (f b) Source
Conjoined
is strong enough to let us distribute every Conjoined
Profunctor
over every Haskell Functor
. This is effectively a
generalization of fmap
.
conjoined :: ((p ~ (->)) => q (a -> b) r) -> q (p a b) r -> q (p a b) r Source
This permits us to make a decision at an outermost point about whether or not we use an index.
Ideally any use of this function should be done in such a way so that you compute the same answer, but this cannot be enforced at the type level.
A function with access to a index. This constructor may be useful when you need to store
an Indexable
in a container to avoid ImpredicativeTypes
.
index :: Indexed i a b -> i -> a -> b
Indexed | |
|
Category * (Indexed i) Source | |
(~) * i j => Indexable i (Indexed j) Source | |
Arrow (Indexed i) Source | |
ArrowChoice (Indexed i) Source | |
ArrowApply (Indexed i) Source | |
ArrowLoop (Indexed i) Source | |
Representable (Indexed i) Source | |
Corepresentable (Indexed i) Source | |
Strong (Indexed i) Source | |
Choice (Indexed i) Source | |
Costrong (Indexed i) Source | |
Profunctor (Indexed i) Source | |
Conjoined (Indexed i) Source | |
Bizarre (Indexed Int) Mafic Source | |
Sieve (Indexed i) ((->) i) Source | |
Cosieve (Indexed i) ((,) i) Source | |
Sellable (Indexed i) (Molten i) Source | |
Bizarre (Indexed i) (Molten i) Source | |
Monad (Indexed i a) Source | |
Functor (Indexed i a) Source | |
MonadFix (Indexed i a) Source | |
Applicative (Indexed i a) Source | |
Apply (Indexed i a) Source | |
Bind (Indexed i a) Source | |
type Rep (Indexed i) = (->) i Source | |
type Corep (Indexed i) = (,) i Source |
(<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r infixr 9 Source
Compose an Indexed
function with a non-indexed function.
Mnemonically, the <
points to the indexing we want to preserve.
>>>
let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])]
>>>
nestedMap^..(itraversed<.itraversed).withIndex
[(1,"one,ten"),(1,"one,twenty"),(2,"two,thirty"),(2,"two,forty")]
(<.>) :: Indexable (i, j) p => (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> p a b -> r infixr 9 Source
Composition of Indexed
functions.
Mnemonically, the <
and >
points to the fact that we want to preserve the indices.
>>>
let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])]
>>>
nestedMap^..(itraversed<.>itraversed).withIndex
[((1,10),"one,ten"),((1,20),"one,twenty"),((2,30),"two,thirty"),((2,40),"two,forty")]
(.>) :: (st -> r) -> (kab -> st) -> kab -> r infixr 9 Source
Compose a non-indexed function with an Indexed
function.
Mnemonically, the >
points to the indexing we want to preserve.
This is the same as (
..
)
f
(and .
gf
) gives you the index of .>
gg
unless g
is index-preserving, like a
Prism
, Iso
or Equality
, in which case it'll pass through the index of f
.
>>>
let nestedMap = (fmap Map.fromList . Map.fromList) [(1, [(10, "one,ten"), (20, "one,twenty")]), (2, [(30, "two,thirty"), (40,"two,forty")])]
>>>
nestedMap^..(itraversed.>itraversed).withIndex
[(10,"one,ten"),(20,"one,twenty"),(30,"two,thirty"),(40,"two,forty")]
selfIndex :: Indexable a p => p a fb -> a -> fb Source
Use a value itself as its own index. This is essentially an indexed version of id
.
Note: When used to modify the value, this can break the index requirements assumed by indices
and similar,
so this is only properly an IndexedGetter
, but it can be used as more.
selfIndex
::IndexedGetter
a a b
icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r Source
Composition of Indexed
functions with a user supplied function for combining indices.
indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t Source
Transform a Traversal
into an IndexedTraversal
or
a Fold
into an IndexedFold
, etc.
indexing
::Traversal
s t a b ->IndexedTraversal
Int
s t a bindexing
::Prism
s t a b ->IndexedTraversal
Int
s t a bindexing
::Lens
s t a b ->IndexedLens
Int
s t a bindexing
::Iso
s t a b ->IndexedLens
Int
s t a bindexing
::Fold
s a ->IndexedFold
Int
s aindexing
::Getter
s a ->IndexedGetter
Int
s a
indexing
::Indexable
Int
p =>LensLike
(Indexing
f) s t a b ->Over
p f s t a b
indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t Source
Transform a Traversal
into an IndexedTraversal
or
a Fold
into an IndexedFold
, etc.
This combinator is like indexing
except that it handles large traversals and folds gracefully.
indexing64
::Traversal
s t a b ->IndexedTraversal
Int64
s t a bindexing64
::Prism
s t a b ->IndexedTraversal
Int64
s t a bindexing64
::Lens
s t a b ->IndexedLens
Int64
s t a bindexing64
::Iso
s t a b ->IndexedLens
Int64
s t a bindexing64
::Fold
s a ->IndexedFold
Int64
s aindexing64
::Getter
s a ->IndexedGetter
Int64
s a
indexing64
::Indexable
Int64
p =>LensLike
(Indexing64
f) s t a b ->Over
p f s t a b
Indexed Functors
class Functor f => FunctorWithIndex i f | f -> i where Source
A Functor
with an additional index.
Instances must satisfy a modified form of the Functor
laws:
imap
f.
imap
g ≡imap
(\i -> f i.
g i)imap
(\_ a -> a) ≡id
Nothing
imap :: (i -> a -> b) -> f a -> f b Source
Map with access to the index.
imapped :: IndexedSetter i (f a) (f b) a b Source
The IndexedSetter
for a FunctorWithIndex
.
If you don't need access to the index, then mapped
is more flexible in what it accepts.
Indexed Foldables
class Foldable f => FoldableWithIndex i f | f -> i where Source
A container that supports folding with an additional index.
Nothing
ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m Source
Fold a container by mapping value to an arbitrary Monoid
with access to the index i
.
When you don't need access to the index then foldMap
is more flexible in what it accepts.
foldMap
≡ifoldMap
.
const
ifolded :: IndexedFold i (f a) a Source
The IndexedFold
of a FoldableWithIndex
container.
is a fold over the keys of a ifolded
.
asIndex
FoldableWithIndex
.
>>>
Data.Map.fromList [(2, "hello"), (1, "world")]^..ifolded.asIndex
[1,2]
ifoldr :: (i -> a -> b -> b) -> b -> f a -> b Source
Right-associative fold of an indexed container with access to the index i
.
When you don't need access to the index then foldr
is more flexible in what it accepts.
foldr
≡ifoldr
.
const
ifoldl :: (i -> b -> a -> b) -> b -> f a -> b Source
Left-associative fold of an indexed container with access to the index i
.
When you don't need access to the index then foldl
is more flexible in what it accepts.
foldl
≡ifoldl
.
const
Indexed Foldable Combinators
iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool Source
iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool Source
inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool Source
itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () Source
ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () Source
imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m () Source
Run monadic actions for each target of an IndexedFold
or IndexedTraversal
with access to the index,
discarding the results.
When you don't need access to the index then mapMOf_
is more flexible in what it accepts.
mapM_
≡imapM
.
const
iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m () Source
Run monadic actions for each target of an IndexedFold
or IndexedTraversal
with access to the index,
discarding the results (with the arguments flipped).
iforM_
≡flip
imapM_
When you don't need access to the index then forMOf_
is more flexible in what it accepts.
forMOf_
l a ≡iforMOf
l a.
const
iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b] Source
Concatenate the results of a function of the elements of an indexed container with access to the index.
When you don't need access to the index then concatMap
is more flexible in what it accepts.
concatMap
≡iconcatMap
.
const
iconcatMap
≡ifoldMap
ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a) Source
ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b Source
ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b Source
itoList :: FoldableWithIndex i f => f a -> [(i, a)] Source
Converting to Folds
withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t) Source
Fold a container with indices returning both the indices and the values.
The result is only valid to compose in a Traversal
, if you don't edit the
index as edits to the index have no effect.
asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s) Source
When composed with an IndexedFold
or IndexedTraversal
this yields an
(Indexed
) Fold
of the indices.
Restricting by Index
indices :: (Indexable i p, Applicative f) => (i -> Bool) -> Optical' p (Indexed i) f a a Source
This allows you to filter an IndexedFold
, IndexedGetter
, IndexedTraversal
or IndexedLens
based on a predicate
on the indices.
>>>
["hello","the","world","!!!"]^..traversed.indices even
["hello","world"]
>>>
over (traversed.indices (>0)) Prelude.reverse $ ["He","was","stressed","o_O"]
["He","saw","desserts","O_o"]
index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a Source
This allows you to filter an IndexedFold
, IndexedGetter
, IndexedTraversal
or IndexedLens
based on an index.
>>>
["hello","the","world","!!!"]^?traversed.index 2
Just "world"
Indexed Traversables
class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i t | t -> i where Source
A Traversable
with an additional index.
An instance must satisfy a (modified) form of the Traversable
laws:
itraverse
(const
Identity
) ≡Identity
fmap
(itraverse
f).
itraverse
g ≡getCompose
.
itraverse
(\i ->Compose
.
fmap
(f i).
g i)
Nothing
itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) Source
Traverse an indexed container.
itraverse
≡itraverseOf
itraversed
itraversed :: IndexedTraversal i (t a) (t b) a b Source
The IndexedTraversal
of a TraversableWithIndex
container.
Indexed Traversable Combinators
ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) Source
imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b) Source
iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b) Source
imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) Source
Generalizes mapAccumR
to add access to the index.
imapAccumROf
accumulates state from right to left.
mapAccumR
≡imapAccumR
.
const
imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) Source
Generalizes mapAccumL
to add access to the index.
imapAccumLOf
accumulates state from left to right.
mapAccumLOf
≡imapAccumL
.
const
Indexed Folds with Reified Monoid
ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r Source
ifoldMapByOf :: (forall s. IndexedGetting i (M r s) t a) -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r Source