{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
module Control.Lens.Internal.Level
(
Level(..)
, Deepening(..), deepening
, Flows(..)
) where
import Prelude ()
import Control.Lens.Internal.Prelude
import Data.Functor.Apply
data Level i a
= Two {-# UNPACK #-} !Word !(Level i a) !(Level i a)
| One i a
| Zero
deriving (Eq,Ord,Show,Read)
lappend :: Level i a -> Level i a -> Level i a
lappend Zero Zero = Zero
lappend Zero r@One{} = r
lappend l@One{} Zero = l
lappend Zero (Two n l r) = Two (n + 1) l r
lappend (Two n l r) Zero = Two (n + 1) l r
lappend l r = Two 0 l r
{-# INLINE lappend #-}
instance Functor (Level i) where
fmap f = go where
go (Two n l r) = Two n (go l) (go r)
go (One i a) = One i (f a)
go Zero = Zero
{-# INLINE fmap #-}
instance Foldable (Level i) where
foldMap f = go where
go (Two _ l r) = go l `mappend` go r
go (One _ a) = f a
go Zero = mempty
{-# INLINE foldMap #-}
instance Traversable (Level i) where
traverse f = go where
go (Two n l r) = Two n <$> go l <*> go r
go (One i a) = One i <$> f a
go Zero = pure Zero
{-# INLINE traverse #-}
newtype Deepening i a = Deepening { runDeepening :: forall r. Int -> (Level i a -> Bool -> r) -> r }
instance Semigroup (Deepening i a) where
Deepening l <> Deepening r = Deepening $ \ n k -> case n of
0 -> k Zero True
_ -> let n' = n - 1 in l n' $ \x a -> r n' $ \y b -> k (lappend x y) (a || b)
{-# INLINE (<>) #-}
instance Monoid (Deepening i a) where
mempty = Deepening $ \ _ k -> k Zero False
{-# INLINE mempty #-}
mappend (Deepening l) (Deepening r) = Deepening $ \ n k -> case n of
0 -> k Zero True
_ -> let n' = n - 1 in l n' $ \x a -> r n' $ \y b -> k (lappend x y) (a || b)
{-# INLINE mappend #-}
deepening :: i -> a -> Deepening i a
deepening i a = Deepening $ \n k -> k (if n == 0 then One i a else Zero) False
{-# INLINE deepening #-}
newtype Flows i b a = Flows { runFlows :: [Level i b] -> a }
instance Functor (Flows i b) where
fmap f (Flows g) = Flows (f . g)
{-# INLINE fmap #-}
triml :: Level i b -> Level i b
triml (Two 0 l _) = l
triml (Two n l r) = Two (n - 1) l r
triml x = x
{-# INLINE triml #-}
trimr :: Level i b -> Level i b
trimr (Two 0 _ r) = r
trimr (Two n l r) = Two (n - 1) l r
trimr x = x
{-# INLINE trimr #-}
instance Apply (Flows i b) where
Flows mf <.> Flows ma = Flows $ \ xss -> case xss of
[] -> mf [] (ma [])
(_:xs) -> mf (triml <$> xs) $ ma (trimr <$> xs)
{-# INLINE (<.>) #-}
instance Applicative (Flows i b) where
pure a = Flows (const a)
{-# INLINE pure #-}
Flows mf <*> Flows ma = Flows $ \ xss -> case xss of
[] -> mf [] (ma [])
(_:xs) -> mf (triml <$> xs) $ ma (trimr <$> xs)
{-# INLINE (<*>) #-}