lens-family-core-1.2.0: Haskell 98 Lens Families

Safe HaskellSafe-Inferred
LanguageHaskell98

Lens.Family.Clone

Contents

Description

This module is provided for Haskell 98 compatibility. If you are able to use Rank2Types, I advise you to instead use the rank 2 aliases

  • Lens, Lens'
  • Traversal, Traversal'
  • Setter, Setter'
  • Fold, Fold'
  • Getter, Getter'

from the lens-family package instead.

cloneLens allows one to circumvent the need for rank 2 types by allowing one to take a universal monomorphic lens instance and rederive a polymorphic instance. When you require a lens family parameter you use the type ALens a a' b b' (or ALens' a b). Then, inside a where clause, you use cloneLens to create a Lens type.

For example.

example :: ALens a a' b b' -> Example
example l = ... x^.cl ... cl .~ y ...
 where
  cl x = cloneLens l x

Note: It is important to eta-expand the definition of cl to avoid the dreaded monomorphism restriction.

cloneTraversal, cloneGetter, cloneSetter, and cloneFold provides similar functionality for traversals, getters, setters, and folds respectively.

Note: Cloning is only need if you use a functional reference multiple times with different instances.

Synopsis

Documentation

cloneLens :: Functor f => ALens a a' b b' -> LensLike f a a' b b' Source

Converts a universal lens instance back into a polymorphic lens.

cloneTraversal :: Applicative f => ATraversal a a' b b' -> LensLike f a a' b b' Source

Converts a universal traversal instance back into a polymorphic traversal.

cloneSetter :: Identical f => ASetter a a' b b' -> LensLike f a a' b b' Source

Converts a universal setter instance back into a polymorphic setter.

cloneGetter :: Phantom f => AGetter a a' b b' -> LensLike f a a' b b' Source

Converts a universal getter instance back into a polymorphic getter.

cloneFold :: (Phantom f, Applicative f) => AFold a a' b b' -> LensLike f a a' b b' Source

Converts a universal fold instance back into a polymorphic fold.

Types

type ALens a a' b b' = LensLike (IStore b b') a a' b b' Source

ALens a a' b b' is a universal Lens a a' b b' instance

type ALens' a b = LensLike' (IStore b b) a b Source

ALens' a b is a universal Lens' a b instance

type ATraversal a a' b b' = LensLike (IKleeneStore b b') a a' b b' Source

ATraversal a a' b b' is a universal Traversal a a' b b' instance

type ATraversal' a b = LensLike' (IKleeneStore b b) a b Source

ATraversal' a b is a universal Traversal' a b instance

type AGetter a a' b b' = FoldLike b a a' b b' Source

AGetter a a' b b' is a universal Fold a a' b b' instance

type AGetter' a b = FoldLike' b a b Source

AGetter' a b is a universal Fold' a b instance

type AFold a a' b b' = FoldLike [b] a a' b b' Source

AFold a a' b b' is a universal Fold' a a' b b' instance

type AFold' a b = FoldLike' [b] a b Source

AFold' a b is a universal Fold' a b instance

data IStore b b' a Source

Instances

Functor (IStore b b') 

data IKleeneStore b b' a Source

Instances

Re-exports

type LensLike f a a' b b' = (b -> f b') -> a -> f a' Source

type LensLike' f a b = (b -> f b) -> a -> f a Source

type FoldLike r a a' b b' = LensLike (Constant r) a a' b b' Source

type FoldLike' r a b = LensLike' (Constant r) a b Source

type ASetter a a' b b' = LensLike Identity a a' b b' Source

class Functor f => Applicative f

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*>).

A minimal complete definition must include implementations of these functions satisfying the following laws:

identity
pure id <*> v = v
composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
homomorphism
pure f <*> pure x = pure (f x)
interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, (<*>)

class Functor f => Phantom f Source

Minimal complete definition

coerce

class Applicative f => Identical f Source

Minimal complete definition

extract