module Lens.Family.State.Zoom where import Control.Monad (liftM) newtype Zooming m c a = Zooming { Zooming m c a -> m (c, a) unZooming :: m (c, a) } instance Monad m => Functor (Zooming m c) where fmap :: (a -> b) -> Zooming m c a -> Zooming m c b fmap a -> b f (Zooming m (c, a) m) = m (c, b) -> Zooming m c b forall (m :: * -> *) c a. m (c, a) -> Zooming m c a Zooming (((c, a) -> (c, b)) -> m (c, a) -> m (c, b) forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r liftM ((a -> b) -> (c, a) -> (c, b) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap a -> b f) m (c, a) m) instance (Monoid c, Monad m) => Applicative (Zooming m c) where pure :: a -> Zooming m c a pure a a = m (c, a) -> Zooming m c a forall (m :: * -> *) c a. m (c, a) -> Zooming m c a Zooming ((c, a) -> m (c, a) forall (m :: * -> *) a. Monad m => a -> m a return (c forall a. Monoid a => a mempty, a a)) Zooming m (c, a -> b) f <*> :: Zooming m c (a -> b) -> Zooming m c a -> Zooming m c b <*> Zooming m (c, a) x = m (c, b) -> Zooming m c b forall (m :: * -> *) c a. m (c, a) -> Zooming m c a Zooming (m (c, b) -> Zooming m c b) -> m (c, b) -> Zooming m c b forall a b. (a -> b) -> a -> b $ do (c a, a -> b f') <- m (c, a -> b) f (c b, a x') <- m (c, a) x (c, b) -> m (c, b) forall (m :: * -> *) a. Monad m => a -> m a return (c a c -> c -> c forall a. Semigroup a => a -> a -> a <> c b, a -> b f' a x')