{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE DeriveGeneric #-}
#endif
#if __GLASGOW_HASKELL__ >= 707
{-# LANGUAGE DataKinds #-}
#endif
#if __GLASGOW_HASKELL__ >= 800
{-# LANGUAGE DeriveLift #-}
#endif
#ifndef MIN_VERSION_hashable
#define MIN_VERSION_hashable(x,y,z) 1
#endif
#ifndef MIN_VERSION_vector
#define MIN_VERSION_vector(x,y,z) 1
#endif
#ifndef MIN_VERSION_transformers
#define MIN_VERSION_transformers(x,y,z) 1
#endif
module Linear.V2
( V2(..)
, R1(..)
, R2(..)
, _yx
, ex, ey
, perp
, angle
, crossZ
) where
import Control.Applicative
import Control.DeepSeq (NFData(rnf))
import Control.Monad (liftM)
import Control.Monad.Fix
import Control.Monad.Zip
import Control.Lens hiding ((<.>))
import Data.Binary as Binary
import Data.Bytes.Serial
import Data.Data
import Data.Distributive
import Data.Foldable
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Rep
import Data.Hashable
#if (MIN_VERSION_hashable(1,2,5))
import Data.Hashable.Lifted
#endif
import Data.Semigroup
import Data.Semigroup.Foldable
import Data.Serialize as Cereal
#if __GLASGOW_HASKELL__ >= 707
import qualified Data.Vector as V
#endif
import Foreign.Ptr (castPtr)
import Foreign.Storable (Storable(..))
import GHC.Arr (Ix(..))
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
#if __GLASGOW_HASKELL__ >= 706
import GHC.Generics (Generic1)
#endif
#if __GLASGOW_HASKELL__ >= 800
import Language.Haskell.TH.Syntax (Lift)
#endif
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed.Base as U
import Linear.Metric
import Linear.Epsilon
#if __GLASGOW_HASKELL__ >= 707
import Linear.V
#endif
import Linear.Vector
import Linear.V1 (R1(..),ex)
import Prelude hiding (sum)
data V2 a = V2 !a !a deriving
(Eq,Ord,Show,Read,Data,Typeable
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
,Generic
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706
,Generic1
#endif
#if __GLASGOW_HASKELL__ >= 800
,Lift
#endif
)
#if __GLASGOW_HASKELL__ >= 707
instance Finite V2 where
type Size V2 = 2
toV (V2 a b) = V (V.fromListN 2 [a,b])
fromV (V v) = V2 (v V.! 0) (v V.! 1)
#endif
instance Functor V2 where
fmap f (V2 a b) = V2 (f a) (f b)
{-# INLINE fmap #-}
a <$ _ = V2 a a
{-# INLINE (<$) #-}
instance Foldable V2 where
foldMap f (V2 a b) = f a `mappend` f b
{-# INLINE foldMap #-}
#if __GLASGOW_HASKELL__ >= 710
null _ = False
length _ = 2
#endif
instance Traversable V2 where
traverse f (V2 a b) = V2 <$> f a <*> f b
{-# INLINE traverse #-}
instance Foldable1 V2 where
foldMap1 f (V2 a b) = f a <> f b
{-# INLINE foldMap1 #-}
instance Traversable1 V2 where
traverse1 f (V2 a b) = V2 <$> f a <.> f b
{-# INLINE traverse1 #-}
instance Apply V2 where
V2 a b <.> V2 d e = V2 (a d) (b e)
{-# INLINE (<.>) #-}
instance Applicative V2 where
pure a = V2 a a
{-# INLINE pure #-}
V2 a b <*> V2 d e = V2 (a d) (b e)
{-# INLINE (<*>) #-}
instance Hashable a => Hashable (V2 a) where
hashWithSalt s (V2 a b) = s `hashWithSalt` a `hashWithSalt` b
{-# INLINE hashWithSalt #-}
#if (MIN_VERSION_hashable(1,2,5))
instance Hashable1 V2 where
liftHashWithSalt h s (V2 a b) = s `h` a `h` b
{-# INLINE liftHashWithSalt #-}
#endif
instance Additive V2 where
zero = pure 0
{-# INLINE zero #-}
liftU2 = liftA2
{-# INLINE liftU2 #-}
liftI2 = liftA2
{-# INLINE liftI2 #-}
instance Bind V2 where
V2 a b >>- f = V2 a' b' where
V2 a' _ = f a
V2 _ b' = f b
{-# INLINE (>>-) #-}
instance Monad V2 where
return a = V2 a a
{-# INLINE return #-}
V2 a b >>= f = V2 a' b' where
V2 a' _ = f a
V2 _ b' = f b
{-# INLINE (>>=) #-}
instance Num a => Num (V2 a) where
(+) = liftA2 (+)
{-# INLINE (+) #-}
(-) = liftA2 (-)
{-# INLINE (-) #-}
(*) = liftA2 (*)
{-# INLINE (*) #-}
negate = fmap negate
{-# INLINE negate #-}
abs = fmap abs
{-# INLINE abs #-}
signum = fmap signum
{-# INLINE signum #-}
fromInteger = pure . fromInteger
{-# INLINE fromInteger #-}
instance Fractional a => Fractional (V2 a) where
recip = fmap recip
{-# INLINE recip #-}
(/) = liftA2 (/)
{-# INLINE (/) #-}
fromRational = pure . fromRational
{-# INLINE fromRational #-}
instance Floating a => Floating (V2 a) where
pi = pure pi
{-# INLINE pi #-}
exp = fmap exp
{-# INLINE exp #-}
sqrt = fmap sqrt
{-# INLINE sqrt #-}
log = fmap log
{-# INLINE log #-}
(**) = liftA2 (**)
{-# INLINE (**) #-}
logBase = liftA2 logBase
{-# INLINE logBase #-}
sin = fmap sin
{-# INLINE sin #-}
tan = fmap tan
{-# INLINE tan #-}
cos = fmap cos
{-# INLINE cos #-}
asin = fmap asin
{-# INLINE asin #-}
atan = fmap atan
{-# INLINE atan #-}
acos = fmap acos
{-# INLINE acos #-}
sinh = fmap sinh
{-# INLINE sinh #-}
tanh = fmap tanh
{-# INLINE tanh #-}
cosh = fmap cosh
{-# INLINE cosh #-}
asinh = fmap asinh
{-# INLINE asinh #-}
atanh = fmap atanh
{-# INLINE atanh #-}
acosh = fmap acosh
{-# INLINE acosh #-}
instance Metric V2 where
dot (V2 a b) (V2 c d) = a * c + b * d
{-# INLINE dot #-}
class R1 t => R2 t where
_y :: Lens' (t a) a
_y = _xy._y
{-# INLINE _y #-}
_xy :: Lens' (t a) (V2 a)
_yx :: R2 t => Lens' (t a) (V2 a)
_yx f = _xy $ \(V2 a b) -> f (V2 b a) <&> \(V2 b' a') -> V2 a' b'
{-# INLINE _yx #-}
ey :: R2 t => E t
ey = E _y
instance R1 V2 where
_x f (V2 a b) = (`V2` b) <$> f a
{-# INLINE _x #-}
instance R2 V2 where
_y f (V2 a b) = V2 a <$> f b
{-# INLINE _y #-}
_xy = id
{-# INLINE _xy #-}
instance Distributive V2 where
distribute f = V2 (fmap (\(V2 x _) -> x) f) (fmap (\(V2 _ y) -> y) f)
{-# INLINE distribute #-}
perp :: Num a => V2 a -> V2 a
perp (V2 a b) = V2 (negate b) a
{-# INLINE perp #-}
instance Epsilon a => Epsilon (V2 a) where
nearZero = nearZero . quadrance
{-# INLINE nearZero #-}
instance Storable a => Storable (V2 a) where
sizeOf _ = 2 * sizeOf (undefined::a)
{-# INLINE sizeOf #-}
alignment _ = alignment (undefined::a)
{-# INLINE alignment #-}
poke ptr (V2 x y) = poke ptr' x >> pokeElemOff ptr' 1 y
where ptr' = castPtr ptr
{-# INLINE poke #-}
peek ptr = V2 <$> peek ptr' <*> peekElemOff ptr' 1
where ptr' = castPtr ptr
{-# INLINE peek #-}
instance Ix a => Ix (V2 a) where
{-# SPECIALISE instance Ix (V2 Int) #-}
range (V2 l1 l2,V2 u1 u2) =
[ V2 i1 i2 | i1 <- range (l1,u1), i2 <- range (l2,u2) ]
{-# INLINE range #-}
unsafeIndex (V2 l1 l2,V2 u1 u2) (V2 i1 i2) =
unsafeIndex (l1,u1) i1 * unsafeRangeSize (l2,u2) + unsafeIndex (l2,u2) i2
{-# INLINE unsafeIndex #-}
inRange (V2 l1 l2,V2 u1 u2) (V2 i1 i2) =
inRange (l1,u1) i1 && inRange (l2,u2) i2
{-# INLINE inRange #-}
instance Representable V2 where
type Rep V2 = E V2
tabulate f = V2 (f ex) (f ey)
{-# INLINE tabulate #-}
index xs (E l) = view l xs
{-# INLINE index #-}
instance FunctorWithIndex (E V2) V2 where
imap f (V2 a b) = V2 (f ex a) (f ey b)
{-# INLINE imap #-}
instance FoldableWithIndex (E V2) V2 where
ifoldMap f (V2 a b) = f ex a `mappend` f ey b
{-# INLINE ifoldMap #-}
instance TraversableWithIndex (E V2) V2 where
itraverse f (V2 a b) = V2 <$> f ex a <*> f ey b
{-# INLINE itraverse #-}
type instance Index (V2 a) = E V2
type instance IxValue (V2 a) = a
instance Ixed (V2 a) where
ix = el
{-# INLINE ix #-}
instance Each (V2 a) (V2 b) a b where
each = traverse
{-# INLINE each #-}
data instance U.Vector (V2 a) = V_V2 {-# UNPACK #-} !Int !(U.Vector a)
data instance U.MVector s (V2 a) = MV_V2 {-# UNPACK #-} !Int !(U.MVector s a)
instance U.Unbox a => U.Unbox (V2 a)
instance U.Unbox a => M.MVector U.MVector (V2 a) where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
basicLength (MV_V2 n _) = n
basicUnsafeSlice m n (MV_V2 _ v) = MV_V2 n (M.basicUnsafeSlice (2*m) (2*n) v)
basicOverlaps (MV_V2 _ v) (MV_V2 _ u) = M.basicOverlaps v u
basicUnsafeNew n = liftM (MV_V2 n) (M.basicUnsafeNew (2*n))
basicUnsafeRead (MV_V2 _ v) i =
do let o = 2*i
x <- M.basicUnsafeRead v o
y <- M.basicUnsafeRead v (o+1)
return (V2 x y)
basicUnsafeWrite (MV_V2 _ v) i (V2 x y) =
do let o = 2*i
M.basicUnsafeWrite v o x
M.basicUnsafeWrite v (o+1) y
#if MIN_VERSION_vector(0,11,0)
basicInitialize (MV_V2 _ v) = M.basicInitialize v
{-# INLINE basicInitialize #-}
#endif
instance U.Unbox a => G.Vector U.Vector (V2 a) where
{-# INLINE basicUnsafeFreeze #-}
{-# INLINE basicUnsafeThaw #-}
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicUnsafeIndexM #-}
basicUnsafeFreeze (MV_V2 n v) = liftM ( V_V2 n) (G.basicUnsafeFreeze v)
basicUnsafeThaw ( V_V2 n v) = liftM (MV_V2 n) (G.basicUnsafeThaw v)
basicLength ( V_V2 n _) = n
basicUnsafeSlice m n (V_V2 _ v) = V_V2 n (G.basicUnsafeSlice (2*m) (2*n) v)
basicUnsafeIndexM (V_V2 _ v) i =
do let o = 2*i
x <- G.basicUnsafeIndexM v o
y <- G.basicUnsafeIndexM v (o+1)
return (V2 x y)
instance MonadZip V2 where
mzipWith = liftA2
instance MonadFix V2 where
mfix f = V2 (let V2 a _ = f a in a)
(let V2 _ a = f a in a)
angle :: Floating a => a -> V2 a
angle a = V2 (cos a) (sin a)
crossZ :: Num a => V2 a -> V2 a -> a
crossZ (V2 x1 y1) (V2 x2 y2) = x1*y2 - y1*x2
{-# INLINE crossZ #-}
instance Bounded a => Bounded (V2 a) where
minBound = pure minBound
{-# INLINE minBound #-}
maxBound = pure maxBound
{-# INLINE maxBound #-}
instance NFData a => NFData (V2 a) where
rnf (V2 a b) = rnf a `seq` rnf b
instance Serial1 V2 where
serializeWith = traverse_
deserializeWith k = V2 <$> k <*> k
instance Serial a => Serial (V2 a) where
serialize = serializeWith serialize
deserialize = deserializeWith deserialize
instance Binary a => Binary (V2 a) where
put = serializeWith Binary.put
get = deserializeWith Binary.get
instance Serialize a => Serialize (V2 a) where
put = serializeWith Cereal.put
get = deserializeWith Cereal.get
#if (MIN_VERSION_transformers(0,5,0)) || !(MIN_VERSION_transformers(0,4,0))
instance Eq1 V2 where
liftEq f (V2 a b) (V2 c d) = f a c && f b d
instance Ord1 V2 where
liftCompare f (V2 a b) (V2 c d) = f a c `mappend` f b d
instance Read1 V2 where
liftReadsPrec f _ = readsData $ readsBinaryWith f f "V2" V2
instance Show1 V2 where
liftShowsPrec f _ d (V2 a b) = showsBinaryWith f f "V2" d a b
#else
instance Eq1 V2 where eq1 = (==)
instance Ord1 V2 where compare1 = compare
instance Show1 V2 where showsPrec1 = showsPrec
instance Read1 V2 where readsPrec1 = readsPrec
#endif
instance Field1 (V2 a) (V2 a) a a where
_1 f (V2 x y) = f x <&> \x' -> V2 x' y
instance Field2 (V2 a) (V2 a) a a where
_2 f (V2 x y) = f y <&> \y' -> V2 x y'