{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Data.Array.Accelerate.Linear.V2 (
V2(..), pattern V2_,
R1(..),
R2(..),
_yx,
ex, ey,
perp, angle,
) where
import Data.Array.Accelerate as A hiding ( pattern V2 )
import Data.Array.Accelerate.Data.Functor as A
import Data.Array.Accelerate.Smart
import Data.Array.Accelerate.Linear.Epsilon
import Data.Array.Accelerate.Linear.Lift
import Data.Array.Accelerate.Linear.Metric
import Data.Array.Accelerate.Linear.Type
import Data.Array.Accelerate.Linear.V1
import Data.Array.Accelerate.Linear.Vector
import Control.Lens
import Data.Function
import Linear.V2 ( V2(..) )
import Prelude as P
import qualified Linear.V2 as L
perp :: forall a. A.Num a => Exp (V2 a) -> Exp (V2 a)
perp = lift1 (L.perp :: V2 (Exp a) -> V2 (Exp a))
angle :: A.Floating a => Exp a -> Exp (V2 a)
angle = lift . L.angle
class (L.R2 t, R1 t) => R2 t where
_y :: (Elt a, Box t a) => Lens' (Exp (t a)) (Exp a)
_y = liftLens (L._y :: Lens' (t (Exp a)) (Exp a))
_xy :: (Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a))
_xy = liftLens (L._xy :: Lens' (t (Exp a)) (V2 (Exp a)))
_yx :: forall t a. (R2 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a))
_yx = liftLens (L._yx :: Lens' (t (Exp a)) (V2 (Exp a)))
ey :: R2 t => E t
ey = E _y
pattern V2_ :: Elt a => Exp a -> Exp a -> Exp (V2 a)
pattern V2_ x y = Pattern (x,y)
{-# COMPLETE V2_ #-}
instance Metric V2
instance Additive V2
instance R1 V2
instance R2 V2
instance Elt a => Elt (V2 a)
instance (Lift Exp a, Elt (Plain a)) => Lift Exp (V2 a) where
type Plain (V2 a) = V2 (Plain a)
lift (V2 x y) = V2_ (lift x) (lift y)
instance Elt a => Unlift Exp (V2 (Exp a)) where
unlift (V2_ x y) = V2 x y
instance (Elt a, Elt b) => Each (Exp (V2 a)) (Exp (V2 b)) (Exp a) (Exp b) where
each = liftLens (each :: Traversal (V2 (Exp a)) (V2 (Exp b)) (Exp a) (Exp b))
instance A.Eq a => A.Eq (V2 a) where
(==) = (A.==) `on` t2
(/=) = (A./=) `on` t2
instance A.Ord a => A.Ord (V2 a) where
(<) = (A.<) `on` t2
(>) = (A.>) `on` t2
(<=) = (A.<=) `on` t2
(>=) = (A.>=) `on` t2
min = v2 $$ on A.min t2
max = v2 $$ on A.max t2
t2 :: Exp (V2 a) -> Exp (a, a)
t2 (Exp e) = Exp e
v2 :: Exp (a, a) -> Exp (V2 a)
v2 (Exp e) = Exp e
instance A.Bounded a => P.Bounded (Exp (V2 a)) where
minBound = V2_ minBound minBound
maxBound = V2_ maxBound maxBound
instance A.Num a => P.Num (Exp (V2 a)) where
(+) = lift2 ((+) :: V2 (Exp a) -> V2 (Exp a) -> V2 (Exp a))
(-) = lift2 ((-) :: V2 (Exp a) -> V2 (Exp a) -> V2 (Exp a))
(*) = lift2 ((*) :: V2 (Exp a) -> V2 (Exp a) -> V2 (Exp a))
negate = lift1 (negate :: V2 (Exp a) -> V2 (Exp a))
signum = lift1 (signum :: V2 (Exp a) -> V2 (Exp a))
abs = lift1 (signum :: V2 (Exp a) -> V2 (Exp a))
fromInteger x = lift (P.fromInteger x :: V2 (Exp a))
instance A.Floating a => P.Fractional (Exp (V2 a)) where
(/) = lift2 ((/) :: V2 (Exp a) -> V2 (Exp a) -> V2 (Exp a))
recip = lift1 (recip :: V2 (Exp a) -> V2 (Exp a))
fromRational x = lift (P.fromRational x :: V2 (Exp a))
instance A.Floating a => P.Floating (Exp (V2 a)) where
pi = lift (pi :: V2 (Exp a))
log = lift1 (log :: V2 (Exp a) -> V2 (Exp a))
exp = lift1 (exp :: V2 (Exp a) -> V2 (Exp a))
sin = lift1 (sin :: V2 (Exp a) -> V2 (Exp a))
cos = lift1 (cos :: V2 (Exp a) -> V2 (Exp a))
tan = lift1 (tan :: V2 (Exp a) -> V2 (Exp a))
sinh = lift1 (sinh :: V2 (Exp a) -> V2 (Exp a))
cosh = lift1 (cosh :: V2 (Exp a) -> V2 (Exp a))
tanh = lift1 (tanh :: V2 (Exp a) -> V2 (Exp a))
asin = lift1 (asin :: V2 (Exp a) -> V2 (Exp a))
acos = lift1 (acos :: V2 (Exp a) -> V2 (Exp a))
atan = lift1 (atan :: V2 (Exp a) -> V2 (Exp a))
asinh = lift1 (asinh :: V2 (Exp a) -> V2 (Exp a))
acosh = lift1 (acosh :: V2 (Exp a) -> V2 (Exp a))
atanh = lift1 (atanh :: V2 (Exp a) -> V2 (Exp a))
instance Epsilon a => Epsilon (V2 a) where
nearZero = nearZero . quadrance
instance A.Functor V2 where
fmap f (V2_ x y) = V2_ (f x) (f y)
x <$ _ = V2_ x x