{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
module Language.Fixpoint.Solver.Monad
(
SolveM
, runSolverM
, getBinds
, filterRequired
, filterValid
, filterValidGradual
, checkSat
, smtEnablembqi
, Stats
, tickIter
, stats
, numIter
)
where
import Language.Fixpoint.Utils.Progress
import qualified Language.Fixpoint.Types.Config as C
import Language.Fixpoint.Types.Config (Config)
import qualified Language.Fixpoint.Types as F
import qualified Language.Fixpoint.Types.Solutions as F
import Language.Fixpoint.Smt.Serialize ()
import Language.Fixpoint.Types.PrettyPrint ()
import Language.Fixpoint.Smt.Interface
import Language.Fixpoint.Solver.Sanitize
import Language.Fixpoint.Solver.Stats
import Language.Fixpoint.Graph.Types (SolverInfo (..))
import Data.List (partition)
import Control.Monad.State.Strict
import qualified Data.HashMap.Strict as M
import Data.Maybe (catMaybes)
import Control.Exception.Base (bracket)
type SolveM = StateT SolverState IO
data SolverState = SS
{ ssCtx :: !Context
, ssBinds :: !F.BindEnv
, ssStats :: !Stats
}
stats0 :: F.GInfo c b -> Stats
stats0 fi = Stats nCs 0 0 0 0
where
nCs = M.size $ F.cm fi
runSolverM :: Config -> SolverInfo b c -> SolveM a -> IO a
runSolverM cfg sI act =
bracket acquire release $ \ctx -> do
res <- runStateT act' (s0 ctx)
smtWrite ctx "(exit)"
return (fst res)
where
s0 ctx = SS ctx be (stats0 fi)
act' = assumesAxioms (F.asserts fi) >> act
release = cleanupContext
acquire = makeContextWithSEnv cfg file initEnv
initEnv = symbolEnv cfg fi
be = F.bs fi
file = C.srcFile cfg
fi = (siQuery sI) {F.hoInfo = F.HOI (C.allowHO cfg) (C.allowHOqs cfg)}
getBinds :: SolveM F.BindEnv
getBinds = ssBinds <$> get
getIter :: SolveM Int
getIter = numIter . ssStats <$> get
incIter, incBrkt :: SolveM ()
incIter = modifyStats $ \s -> s {numIter = 1 + numIter s}
incBrkt = modifyStats $ \s -> s {numBrkt = 1 + numBrkt s}
incChck, incVald :: Int -> SolveM ()
incChck n = modifyStats $ \s -> s {numChck = n + numChck s}
incVald n = modifyStats $ \s -> s {numVald = n + numVald s}
withContext :: (Context -> IO a) -> SolveM a
withContext k = (lift . k) =<< getContext
getContext :: SolveM Context
getContext = ssCtx <$> get
modifyStats :: (Stats -> Stats) -> SolveM ()
modifyStats f = modify $ \s -> s { ssStats = f (ssStats s) }
filterRequired :: F.Cand a -> F.Expr -> SolveM [a]
filterRequired = error "TBD:filterRequired"
filterValid :: F.SrcSpan -> F.Expr -> F.Cand a -> SolveM [a]
filterValid sp p qs = do
qs' <- withContext $ \me ->
smtBracket me "filterValidLHS" $
filterValid_ sp p qs me
incBrkt
incChck (length qs)
incVald (length qs')
return qs'
filterValid_ :: F.SrcSpan -> F.Expr -> F.Cand a -> Context -> IO [a]
filterValid_ sp p qs me = catMaybes <$> do
smtAssert me p
forM qs $ \(q, x) ->
smtBracketAt sp me "filterValidRHS" $ do
smtAssert me (F.PNot q)
valid <- smtCheckUnsat me
return $ if valid then Just x else Nothing
filterValidGradual :: [F.Expr] -> F.Cand a -> SolveM [a]
filterValidGradual p qs = do
qs' <- withContext $ \me ->
smtBracket me "filterValidGradualLHS" $
filterValidGradual_ p qs me
incBrkt
incChck (length qs)
incVald (length qs')
return qs'
filterValidGradual_ :: [F.Expr] -> F.Cand a -> Context -> IO [a]
filterValidGradual_ ps qs me
= (map snd . fst) <$> foldM partitionCandidates ([], qs) ps
where
partitionCandidates :: (F.Cand a, F.Cand a) -> F.Expr -> IO (F.Cand a, F.Cand a)
partitionCandidates (ok, candidates) p = do
(valids', invalids') <- partition snd <$> filterValidOne_ p candidates me
let (valids, invalids) = (fst <$> valids', fst <$> invalids')
return (ok ++ valids, invalids)
filterValidOne_ :: F.Expr -> F.Cand a -> Context -> IO [((F.Expr, a), Bool)]
filterValidOne_ p qs me = do
smtAssert me p
forM qs $ \(q, x) ->
smtBracket me "filterValidRHS" $ do
smtAssert me (F.PNot q)
valid <- smtCheckUnsat me
return $ ((q, x), valid)
smtEnablembqi :: SolveM ()
smtEnablembqi
= withContext $ \me ->
smtWrite me "(set-option :smt.mbqi true)"
checkSat :: F.Expr -> SolveM Bool
checkSat p
= withContext $ \me ->
smtBracket me "checkSat" $
smtCheckSat me p
assumesAxioms :: [F.Triggered F.Expr] -> SolveM ()
assumesAxioms es = withContext $ \me -> forM_ es $ smtAssertAxiom me
stats :: SolveM Stats
stats = ssStats <$> get
tickIter :: Bool -> SolveM Int
tickIter newScc = progIter newScc >> incIter >> getIter
progIter :: Bool -> SolveM ()
progIter newScc = lift $ when newScc progressTick