{-# LANGUAGE BangPatterns #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE ExplicitForAll #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} -- | -- Module : Data.Massiv.Array.Ops.Construct -- Copyright : (c) Alexey Kuleshevich 2018-2019 -- License : BSD3 -- Maintainer : Alexey Kuleshevich <lehins@yandex.ru> -- Stability : experimental -- Portability : non-portable -- module Data.Massiv.Array.Ops.Construct ( -- ** With constant value empty , singleton , replicate -- ** With a function , makeArray , makeArrayLinear , makeArrayR , makeArrayLinearR , makeVectorR -- *** Iterating , iterateN , iiterateN -- *** Unfolding , unfoldr , unfoldrN , unfoldlS_ , iunfoldlS_ , unfoldrS_ , iunfoldrS_ -- *** Random , randomArray , randomArrayS , randomArrayWS -- *** Applicative , makeArrayA , makeArrayAR -- ** Enumeration , (...) , (..:) , range , rangeStepM , rangeStep' , rangeInclusive , rangeStepInclusiveM , rangeStepInclusive' , rangeSize , rangeStepSize , enumFromN , enumFromStepN -- ** Expansion , expandWithin , expandWithinM , expandWithin' , expandOuter , expandInner ) where import Control.Applicative hiding (empty) import Control.Monad (when, void) import Control.Monad.ST import Data.Massiv.Array.Delayed.Pull import Data.Massiv.Array.Delayed.Push import Data.Massiv.Array.Delayed.Stream (unfoldr, unfoldrN) import Data.Massiv.Array.Mutable import Data.Massiv.Core.Common import Prelude as P hiding (enumFromTo, replicate) -- | Just like `makeArray` but with ability to specify the result representation as an -- argument. Note the `Data.Massiv.Array.U`nboxed type constructor in the below example. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> makeArrayR U Par (Sz (2 :> 3 :. 4)) (\ (i :> j :. k) -> i * i + j * j == k * k) -- Array U Par (Sz (2 :> 3 :. 4)) -- [ [ [ True, False, False, False ] -- , [ False, True, False, False ] -- , [ False, False, True, False ] -- ] -- , [ [ False, True, False, False ] -- , [ False, False, False, False ] -- , [ False, False, False, False ] -- ] -- ] -- -- @since 0.1.0 makeArrayR :: Construct r ix e => r -> Comp -> Sz ix -> (ix -> e) -> Array r ix e makeArrayR _ = makeArray {-# INLINE makeArrayR #-} -- | Same as `makeArrayLinear`, but with ability to supply resulting representation -- -- @since 0.3.0 makeArrayLinearR :: Construct r ix e => r -> Comp -> Sz ix -> (Int -> e) -> Array r ix e makeArrayLinearR _ = makeArrayLinear {-# INLINE makeArrayLinearR #-} -- | Same as `makeArrayR`, but restricted to 1-dimensional arrays. -- -- @since 0.1.0 makeVectorR :: Construct r Ix1 e => r -> Comp -> Sz1 -> (Ix1 -> e) -> Array r Ix1 e makeVectorR _ = makeArray {-# INLINE makeVectorR #-} -- | Replicate the same element -- -- @since 0.3.0 replicate :: forall r ix e . Construct r ix e => Comp -> Sz ix -> e -> Array r ix e replicate comp sz e = makeArray comp sz (const e) {-# INLINE replicate #-} newtype STA r ix a = STA {_runSTA :: forall s. MArray s r ix a -> ST s (Array r ix a)} runSTA :: Mutable r ix e => Sz ix -> STA r ix e -> Array r ix e runSTA !sz (STA m) = runST (unsafeNew sz >>= m) {-# INLINE runSTA #-} -- | Similar to `makeArray`, but construct the array sequentially using an `Applicative` interface. -- -- /Note/ - using `Data.Massiv.Array.Mutable.generateArray` or -- `Data.Massiv.Array.Mutable.generateArrayS` will always be faster, althought not always possible. -- -- -- @since 0.2.6 -- makeArrayA :: forall r ix e f. (Mutable r ix e, Applicative f) => Sz ix -> (ix -> f e) -> f (Array r ix e) makeArrayA !sz f = let n = totalElem sz go !i | i < n = liftA2 (\e (STA st) -> STA (\ma -> unsafeLinearWrite ma i e >> st ma)) (f (fromLinearIndex sz i)) (go (i + 1)) | otherwise = pure (STA (unsafeFreeze Seq)) in runSTA sz <$> go 0 {-# INLINE makeArrayA #-} -- | Same as `makeArrayA`, but with ability to supply result array representation. -- -- @since 0.2.6 -- makeArrayAR :: forall r ix e f. (Mutable r ix e, Applicative f) => r -> Sz ix -> (ix -> f e) -> f (Array r ix e) makeArrayAR _ = makeArrayA {-# INLINE makeArrayAR #-} -- | Sequentially iterate over each cell in the array in the row-major order while continuously -- aplying the accumulator at each step. -- -- ==== __Example__ -- -- >>> import Data.Massiv.Array -- >>> iterateN (Sz2 2 10) succ (10 :: Int) -- Array DL Seq (Sz (2 :. 10)) -- [ [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ] -- , [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ] -- ] -- -- @since 0.3.0 iterateN :: forall ix e . Index ix => Sz ix -> (e -> e) -> e -> Array DL ix e iterateN sz f = unfoldrS_ sz $ \a -> let !a' = f a in (a', a') {-# INLINE iterateN #-} -- | Same as `iterateN`, but with index aware function. -- -- @since 0.3.0 iiterateN :: forall ix e . Index ix => Sz ix -> (e -> ix -> e) -> e -> Array DL ix e iiterateN sz f = iunfoldrS_ sz $ \a ix -> let !a' = f a ix in (a', a') {-# INLINE iiterateN #-} -- | Right unfold of a delayed load array. For the inverse direction use `unfoldlS_`. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> unfoldrS_ (Sz1 10) (\xs -> (head xs, tail xs)) ([10 ..] :: [Int]) -- Array DL Seq (Sz1 10) -- [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ] -- -- @since 0.3.0 unfoldrS_ :: forall ix e a . Construct DL ix e => Sz ix -> (a -> (e, a)) -> a -> Array DL ix e unfoldrS_ sz f = iunfoldrS_ sz (\a _ -> f a) {-# INLINE unfoldrS_ #-} -- | Right unfold of a delayed load array with index aware function -- -- @since 0.3.0 iunfoldrS_ :: Construct DL ix e => Sz ix -> (a -> ix -> (e, a)) -> a -> Array DL ix e iunfoldrS_ sz f acc0 = DLArray { dlComp = Seq , dlSize = sz , dlDefault = Nothing , dlLoad = \_ startAt dlWrite -> void $ loopM startAt (< (totalElem sz + startAt)) (+ 1) acc0 $ \ !i !acc -> do let (e, acc') = f acc $ fromLinearIndex sz (i - startAt) dlWrite i e pure acc' } {-# INLINE iunfoldrS_ #-} -- | Unfold sequentially from the end. There is no way to save the accumulator after -- unfolding is done, since resulting array is delayed, but it's possible to use -- `Data.Massiv.Array.Mutable.unfoldlPrimM` to achive such effect. -- -- @since 0.3.0 unfoldlS_ :: Construct DL ix e => Sz ix -> (a -> (a, e)) -> a -> Array DL ix e unfoldlS_ sz f = iunfoldlS_ sz (const f) {-# INLINE unfoldlS_ #-} -- | Unfold sequentially from the right with an index aware function. -- -- @since 0.3.0 iunfoldlS_ :: Construct DL ix e => Sz ix -> (ix -> a -> (a, e)) -> a -> Array DL ix e iunfoldlS_ sz f acc0 = DLArray { dlComp = Seq , dlSize = sz , dlDefault = Nothing , dlLoad = \ _ startAt dlWrite -> void $ loopDeepM startAt (< (totalElem sz + startAt)) (+ 1) acc0 $ \ !i !acc -> do let (acc', e) = f (fromLinearIndex sz (i - startAt)) acc dlWrite i e pure acc' } {-# INLINE iunfoldlS_ #-} -- | Create an array with random values by using a pure splittable random number generator -- such as one provided by either [splitmix](https://www.stackage.org/package/splitmix) or -- [random](https://www.stackage.org/package/random) packages. If you don't have a -- splittable generator consider using `randomArrayS` or `randomArrayIO` instead. -- -- Because of the pure nature of the generator and its splitability we are not only able -- to parallelize the random value generation, but also guarantee that it will be -- deterministic, granted none of the arguments have changed. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> import System.Random.SplitMix as SplitMix -- >>> gen = SplitMix.mkSMGen 217 -- >>> randomArray gen SplitMix.splitSMGen SplitMix.nextDouble (ParN 2) (Sz2 2 3) :: Array DL Ix2 Double -- Array DL (ParN 2) (Sz (2 :. 3)) -- [ [ 0.7383156058619669, 0.39904053166835896, 0.5617584038393628 ] -- , [ 0.7218718218678238, 0.7006722805067258, 0.7225894731396042 ] -- ] -- -- >>> import Data.Massiv.Array -- >>> import System.Random as System -- >>> gen = System.mkStdGen 217 -- >>> randomArray gen System.split System.random (ParN 2) (Sz2 2 3) :: Array DL Ix2 Double -- Array DL (ParN 2) (Sz (2 :. 3)) -- [ [ 0.15191527341922206, 0.2045537167404079, 0.9635356052820256 ] -- , [ 9.308278528094238e-2, 0.7200934018606843, 0.23173694193083583 ] -- ] -- -- @since 0.3.3 randomArray :: forall ix e g. Index ix => g -- ^ Initial random value generator -> (g -> (g, g)) -- ^ A function that can split a generator in two independent generators -> (g -> (e, g)) -- TODO: move this argument after the sz, to keep ot consistent. -- ^ A function that produces a random value and the next generator -> Comp -- ^ Computation strategy. -> Sz ix -- ^ Resulting size of the array. -> Array DL ix e randomArray gen splitGen nextRandom comp sz = unsafeMakeLoadArray comp sz Nothing $ \scheduler startAt writeAt -> splitLinearly (numWorkers scheduler) totalLength $ \chunkLength slackStart -> do let slackStartAt = slackStart + startAt writeRandom k genII = do let (e, genII') = nextRandom genII writeAt k e pure genII' genForSlack <- loopM startAt (< slackStartAt) (+ chunkLength) gen $ \start genI -> do let (genI0, genI1) = if numWorkers scheduler == 1 then (genI, genI) else splitGen genI scheduleWork_ scheduler $ void $ loopM start (< (start + chunkLength)) (+ 1) genI0 writeRandom pure genI1 when (slackStartAt < totalLength + startAt) $ scheduleWork_ scheduler $ void $ loopM slackStartAt (< totalLength + startAt) (+ 1) genForSlack writeRandom where !totalLength = totalElem sz {-# INLINE randomArray #-} -- | Similar to `randomArray` but performs generation sequentially, which means it doesn't -- require splitability property. Another consequence is that it returns the new generator -- together with /manifest/ array of random values. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> import System.Random.SplitMix as SplitMix -- >>> gen = SplitMix.mkSMGen 217 -- >>> snd $ randomArrayS gen (Sz2 2 3) SplitMix.nextDouble :: Array P Ix2 Double -- Array P Seq (Sz (2 :. 3)) -- [ [ 0.8878273949359751, 0.11290807610140963, 0.7383156058619669 ] -- , [ 0.39904053166835896, 0.5617584038393628, 0.16248374266020216 ] -- ] -- -- >>> import Data.Massiv.Array -- >>> import System.Random.Mersenne.Pure64 as MT -- >>> gen = MT.pureMT 217 -- >>> snd $ randomArrayS gen (Sz2 2 3) MT.randomDouble :: Array P Ix2 Double -- Array P Seq (Sz (2 :. 3)) -- [ [ 0.5504018416543631, 0.22504666452851707, 0.4480480867867128 ] -- , [ 0.7139711572975297, 0.49401087853770953, 0.9397201599368645 ] -- ] -- -- >>> import Data.Massiv.Array -- >>> import System.Random as System -- >>> gen = System.mkStdGen 217 -- >>> snd $ randomArrayS gen (Sz2 2 3) System.random :: Array P Ix2 Double -- Array P Seq (Sz (2 :. 3)) -- [ [ 0.7972230393466304, 0.4485860543300083, 0.257773196880671 ] -- , [ 0.19115043859955794, 0.33784788936970034, 3.479381605706322e-2 ] -- ] -- -- @since 0.3.4 randomArrayS :: forall r ix e g. Mutable r ix e => g -- ^ Initial random value generator -> Sz ix -- ^ Resulting size of the array. -> (g -> (e, g)) -- ^ A function that produces a random value and the next generator -> (g, Array r ix e) randomArrayS gen sz nextRandom = runST $ unfoldrPrimM Seq sz (pure . nextRandom) gen {-# INLINE randomArrayS #-} -- | This is a stateful approach of generating random values. If your generator is pure -- and splittable, it is better to use `randomArray` instead, which will give you a pure, -- deterministic and parallelizable generation of arrays. On the other hand, if your -- generator is not thread safe, which is most likely the case, instead of using some sort -- of global mutex, `WorkerStates` allows you to keep track of individual state per worker -- (thread), which fits parallelization of random value generation perfectly. All that -- needs to be done is generators need to be initialized once per worker and then they can -- be reused as many times as necessary. -- -- ==== __Examples__ -- -- In the example below we take a stateful random generator from -- [wmc-random](https://www.stackage.org/package/mwc-random), which is not thread safe, -- and safely parallelize it by giving each thread it's own generator: -- -- > λ> import Data.Massiv.Array -- > λ> import System.Random.MWC (createSystemRandom, uniformR) -- > λ> import System.Random.MWC.Distributions (standard) -- > λ> gens <- initWorkerStates Par (\_ -> createSystemRandom) -- > λ> randomArrayWS gens (Sz2 2 3) standard :: IO (Array P Ix2 Double) -- > Array P Par (Sz (2 :. 3)) -- > [ [ -0.9066144845415213, 0.5264323240310042, -1.320943607597422 ] -- > , [ -0.6837929005619592, -0.3041255565826211, 6.53353089112833e-2 ] -- > ] -- > λ> randomArrayWS gens (Sz1 10) (uniformR (0, 9)) :: IO (Array P Ix1 Int) -- > Array P Par (Sz1 10) -- > [ 3, 6, 1, 2, 1, 7, 6, 0, 8, 8 ] -- -- @since 0.3.4 randomArrayWS :: forall r ix e g m. (Mutable r ix e, MonadUnliftIO m, PrimMonad m) => WorkerStates g -- ^ Use `initWorkerStates` to initialize you per thread generators -> Sz ix -- ^ Resulting size of the array -> (g -> m e) -- ^ Generate the value using the per thread generator. -> m (Array r ix e) randomArrayWS states sz genRandom = generateArrayLinearWS states sz (const genRandom) {-# INLINE randomArrayWS #-} infix 4 ..., ..: -- | Handy synonym for `rangeInclusive` `Seq` -- -- >>> Ix1 4 ... 10 -- Array D Seq (Sz1 7) -- [ 4, 5, 6, 7, 8, 9, 10 ] -- -- @since 0.3.0 (...) :: Index ix => ix -> ix -> Array D ix ix (...) = rangeInclusive Seq {-# INLINE (...) #-} -- | Handy synonym for `range` `Seq` -- -- >>> Ix1 4 ..: 10 -- Array D Seq (Sz1 6) -- [ 4, 5, 6, 7, 8, 9 ] -- -- @since 0.3.0 (..:) :: Index ix => ix -> ix -> Array D ix ix (..:) = range Seq {-# INLINE (..:) #-} -- prop> range comp from to == rangeStep comp from 1 to -- -- | Create an array of indices with a range from start to finish (not-including), where indices are -- incremeted by one. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> range Seq (Ix1 1) 6 -- Array D Seq (Sz1 5) -- [ 1, 2, 3, 4, 5 ] -- >>> fromIx2 <$> range Seq (-1) (2 :. 2) -- Array D Seq (Sz (3 :. 3)) -- [ [ (-1,-1), (-1,0), (-1,1) ] -- , [ (0,-1), (0,0), (0,1) ] -- , [ (1,-1), (1,0), (1,1) ] -- ] -- -- @since 0.1.0 range :: Index ix => Comp -> ix -> ix -> Array D ix ix range comp !from !to = rangeSize comp from (Sz (liftIndex2 (-) to from)) {-# INLINE range #-} -- | Same as `range`, but with a custom step. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> rangeStepM Seq (Ix1 1) 2 8 -- Array D Seq (Sz1 4) -- [ 1, 3, 5, 7 ] -- >>> rangeStepM Seq (Ix1 1) 0 8 -- *** Exception: IndexZeroException: 0 -- -- @since 0.3.0 rangeStepM :: (Index ix, MonadThrow m) => Comp -- ^ Computation strategy -> ix -- ^ Start -> ix -- ^ Step (Can't have zeros) -> ix -- ^ End -> m (Array D ix ix) rangeStepM comp !from !step !to | foldlIndex (\acc i -> acc || i == 0) False step = throwM $ IndexZeroException step | otherwise = let dist = liftIndex2 (-) to from sz = liftIndex2 div dist step r = liftIndex signum $ liftIndex2 mod dist step in pure $ rangeStepSize comp from step (Sz (liftIndex2 (+) sz r)) {-# INLINE rangeStepM #-} -- | Same as `rangeStepM`, but will throw an error whenever @step@ contains zeros. -- -- ==== __Example__ -- -- >>> import Data.Massiv.Array -- >>> rangeStep' Seq (Ix1 1) 2 6 -- Array D Seq (Sz1 3) -- [ 1, 3, 5 ] -- -- @since 0.3.0 rangeStep' :: Index ix => Comp -> ix -> ix -> ix -> Array D ix ix rangeStep' comp from step = either throw id . rangeStepM comp from step {-# INLINE rangeStep' #-} -- | Just like `range`, except the finish index is included. -- -- @since 0.3.0 rangeInclusive :: Index ix => Comp -> ix -> ix -> Array D ix ix rangeInclusive comp ixFrom ixTo = rangeSize comp ixFrom (Sz (liftIndex2 (-) (liftIndex (+ 1) ixTo) ixFrom)) {-# INLINE rangeInclusive #-} -- | Just like `rangeStep`, except the finish index is included. -- -- @since 0.3.0 rangeStepInclusiveM :: (MonadThrow m, Index ix) => Comp -> ix -> ix -> ix -> m (Array D ix ix) rangeStepInclusiveM comp ixFrom step ixTo = rangeStepM comp ixFrom step (liftIndex (1 +) ixTo) {-# INLINE rangeStepInclusiveM #-} -- | Just like `range`, except the finish index is included. -- -- @since 0.3.1 rangeStepInclusive' :: Index ix => Comp -> ix -> ix -> ix -> Array D ix ix rangeStepInclusive' comp ixFrom step = either throw id . rangeStepInclusiveM comp ixFrom step {-# INLINE rangeStepInclusive' #-} -- | Create an array of specified size with indices starting with some index at position @0@ and -- incremented by @1@ until the end of the array is reached -- -- @since 0.3.0 rangeSize :: Index ix => Comp -> ix -- ^ @x@ - start value -> Sz ix -- ^ @sz@ - Size of resulting array -> Array D ix ix rangeSize comp !from !sz = makeArray comp sz (liftIndex2 (+) from) {-# INLINE rangeSize #-} -- | Same as `rangeSize`, but with ability to specify the step. -- -- @since 0.3.0 rangeStepSize :: Index ix => Comp -> ix -- ^ @x@ - start value -> ix -- ^ @delta@ - step value -> Sz ix -- ^ @sz@ - Size of resulting array -> Array D ix ix rangeStepSize comp !from !step !sz = makeArray comp sz (liftIndex2 (+) from . liftIndex2 (*) step) {-# INLINE rangeStepSize #-} -- | Same as `enumFromStepN` with step @delta = 1@. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> enumFromN Seq (5 :: Double) 3 -- Array D Seq (Sz1 3) -- [ 5.0, 6.0, 7.0 ] -- -- @since 0.1.0 enumFromN :: Num e => Comp -> e -- ^ @x@ - start value -> Sz1 -- ^ @n@ - length of resulting vector. -> Array D Ix1 e enumFromN comp !from !sz = makeArray comp sz $ \ i -> fromIntegral i + from {-# INLINE enumFromN #-} -- | Create a vector with length @n@ that has it's 0th value set to @x@ and gradually increasing -- with @step@ delta until the end. Similar to: @`Data.Massiv.Array.fromList'` `Seq` $ `take` n [x, -- x + delta ..]@. Major difference is that `fromList` constructs an `Array` with manifest -- representation, while `enumFromStepN` is delayed. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> enumFromStepN Seq 1 (0.1 :: Double) 5 -- Array D Seq (Sz1 5) -- [ 1.0, 1.1, 1.2, 1.3, 1.4 ] -- -- @since 0.1.0 enumFromStepN :: Num e => Comp -> e -- ^ @x@ - start value -> e -- ^ @delta@ - step value -> Sz1 -- ^ @n@ - length of resulting vector -> Array D Ix1 e enumFromStepN comp !from !step !sz = makeArray comp sz $ \ i -> from + fromIntegral i * step {-# INLINE enumFromStepN #-} -- | Function that expands an array to one with a higher dimension. -- -- This is useful for constructing arrays where there is shared computation -- between multiple cells. The makeArray method of constructing arrays: -- -- > makeArray :: Construct r ix e => Comp -> ix -> (ix -> e) -> Array r ix e -- -- ...runs a function @ix -> e@ at every array index. This is inefficient if -- there is a substantial amount of repeated computation that could be shared -- while constructing elements on the same dimension. The expand functions make -- this possible. First you construct an @Array r (Lower ix) a@ of one fewer -- dimensions where @a@ is something like @`Array` r `Ix1` a@ or @`Array` r `Ix2` a@. Then -- you use 'expandWithin' and a creation function @a -> Int -> b@ to create an -- @`Array` `D` `Ix2` b@ or @`Array` `D` `Ix3` b@ respectfully. -- -- ====__Examples__ -- -- >>> import Data.Massiv.Array -- >>> a = makeArrayR U Seq (Sz1 6) (+10) -- Imagine (+10) is some expensive function -- >>> a -- Array U Seq (Sz1 6) -- [ 10, 11, 12, 13, 14, 15 ] -- >>> expandWithin Dim1 5 (\ e j -> (j + 1) * 100 + e) a :: Array D Ix2 Int -- Array D Seq (Sz (6 :. 5)) -- [ [ 110, 210, 310, 410, 510 ] -- , [ 111, 211, 311, 411, 511 ] -- , [ 112, 212, 312, 412, 512 ] -- , [ 113, 213, 313, 413, 513 ] -- , [ 114, 214, 314, 414, 514 ] -- , [ 115, 215, 315, 415, 515 ] -- ] -- >>> expandWithin Dim2 5 (\ e j -> (j + 1) * 100 + e) a :: Array D Ix2 Int -- Array D Seq (Sz (5 :. 6)) -- [ [ 110, 111, 112, 113, 114, 115 ] -- , [ 210, 211, 212, 213, 214, 215 ] -- , [ 310, 311, 312, 313, 314, 315 ] -- , [ 410, 411, 412, 413, 414, 415 ] -- , [ 510, 511, 512, 513, 514, 515 ] -- ] -- -- @since 0.2.6 expandWithin :: forall ix e r n a. (IsIndexDimension ix n, Manifest r (Lower ix) a) => Dimension n -> Sz1 -> (a -> Ix1 -> e) -> Array r (Lower ix) a -> Array D ix e expandWithin dim (Sz k) f arr = makeArray (getComp arr) sz $ \ix -> let (i, ixl) = pullOutDimension ix dim in f (unsafeIndex arr ixl) i where szl = unSz (size arr) sz = SafeSz (insertDimension szl dim k) {-# INLINE expandWithin #-} -- | Similar to `expandWithin`, except that dimension is specified at a value level, which means it -- will throw an exception on an invalid dimension. -- -- @since 0.2.6 expandWithin' :: (Index ix, Manifest r (Lower ix) a) => Dim -> Sz1 -> (a -> Ix1 -> b) -> Array r (Lower ix) a -> Array D ix b expandWithin' dim k f arr = either throw id $ expandWithinM dim k f arr {-# INLINE expandWithin' #-} -- | Similar to `expandWithin`, except that dimension is specified at a value level, which means it -- will throw an exception on an invalid dimension. -- -- @since 0.4.0 expandWithinM :: (Index ix, Manifest r (Lower ix) a, MonadThrow m) => Dim -> Sz1 -> (a -> Ix1 -> b) -> Array r (Lower ix) a -> m (Array D ix b) expandWithinM dim k f arr = do sz <- insertSzM (size arr) dim k pure $ makeArray (getComp arr) sz $ \ix -> let (i, ixl) = pullOutDim' ix dim -- dim has been checked above in f (unsafeIndex arr ixl) i {-# INLINE expandWithinM #-} -- | Similar to `expandWithin`, except it uses the outermost dimension. -- -- @since 0.2.6 expandOuter :: (Index ix, Manifest r (Lower ix) a) => Sz1 -> (a -> Ix1 -> b) -> Array r (Lower ix) a -> Array D ix b expandOuter k f arr = makeArray (getComp arr) sz $ \ix -> let (i, ixl) = unconsDim ix in f (unsafeIndex arr ixl) i where szl = size arr sz = consSz k szl {-# INLINE expandOuter #-} -- | Similar to `expandWithin`, except it uses the innermost dimension. -- -- @since 0.2.6 expandInner :: (Index ix, Manifest r (Lower ix) a) => Sz1 -> (a -> Ix1 -> b) -> Array r (Lower ix) a -> Array D ix b expandInner k f arr = makeArray (getComp arr) sz $ \ix -> let (ixl, i) = unsnocDim ix in f (unsafeIndex arr ixl) i where szl = size arr sz = snocSz szl k {-# INLINE expandInner #-}