{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UnboxedTuples #-}
module Data.Mod
( Mod
, unMod
, invertMod
, (^%)
) where
import Control.Exception
import Control.DeepSeq
import Control.Monad
import Data.Bits
import Data.Mod.Compat (timesWord2#, remWord2#)
import Data.Ratio
import Data.Word (Word8)
#ifdef MIN_VERSION_semirings
import Data.Euclidean (GcdDomain(..), Euclidean(..), Field)
import Data.Semiring (Semiring(..), Ring(..))
#endif
#ifdef MIN_VERSION_vector
import Control.Monad.Primitive
import Control.Monad.ST
import qualified Data.Primitive.Types as P
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Primitive as P
import Foreign (copyBytes)
#endif
import Foreign.Storable (Storable(..))
import GHC.Exts hiding (timesWord2#, quotRemWord2#)
import GHC.Generics
import GHC.IO (IO(..))
import GHC.Natural (Natural(..), powModNatural)
import GHC.Num.BigNat
import GHC.Num.Integer
import GHC.TypeNats (Nat, KnownNat, natVal, natVal')
import Text.Read (Read(readPrec))
newtype Mod (m :: Nat) = Mod
{ forall (m :: Natural). Mod m -> Natural
unMod :: Natural
}
deriving (Mod m -> Mod m -> Bool
forall (m :: Natural). Mod m -> Mod m -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Mod m -> Mod m -> Bool
$c/= :: forall (m :: Natural). Mod m -> Mod m -> Bool
== :: Mod m -> Mod m -> Bool
$c== :: forall (m :: Natural). Mod m -> Mod m -> Bool
Eq, Mod m -> Mod m -> Bool
Mod m -> Mod m -> Ordering
Mod m -> Mod m -> Mod m
forall (m :: Natural). Eq (Mod m)
forall (m :: Natural). Mod m -> Mod m -> Bool
forall (m :: Natural). Mod m -> Mod m -> Ordering
forall (m :: Natural). Mod m -> Mod m -> Mod m
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Mod m -> Mod m -> Mod m
$cmin :: forall (m :: Natural). Mod m -> Mod m -> Mod m
max :: Mod m -> Mod m -> Mod m
$cmax :: forall (m :: Natural). Mod m -> Mod m -> Mod m
>= :: Mod m -> Mod m -> Bool
$c>= :: forall (m :: Natural). Mod m -> Mod m -> Bool
> :: Mod m -> Mod m -> Bool
$c> :: forall (m :: Natural). Mod m -> Mod m -> Bool
<= :: Mod m -> Mod m -> Bool
$c<= :: forall (m :: Natural). Mod m -> Mod m -> Bool
< :: Mod m -> Mod m -> Bool
$c< :: forall (m :: Natural). Mod m -> Mod m -> Bool
compare :: Mod m -> Mod m -> Ordering
$ccompare :: forall (m :: Natural). Mod m -> Mod m -> Ordering
Ord, forall (m :: Natural) x. Rep (Mod m) x -> Mod m
forall (m :: Natural) x. Mod m -> Rep (Mod m) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall (m :: Natural) x. Rep (Mod m) x -> Mod m
$cfrom :: forall (m :: Natural) x. Mod m -> Rep (Mod m) x
Generic)
instance NFData (Mod m)
instance Show (Mod m) where
show :: Mod m -> String
show (Mod Natural
x) = forall a. Show a => a -> String
show Natural
x
instance KnownNat m => Read (Mod m) where
readPrec :: ReadPrec (Mod m)
readPrec = forall a. Num a => Integer -> a
fromInteger forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Read a => ReadPrec a
readPrec
instance KnownNat m => Real (Mod m) where
toRational :: Mod m -> Rational
toRational (Mod Natural
x) = forall a. Real a => a -> Rational
toRational Natural
x
instance KnownNat m => Enum (Mod m) where
succ :: Mod m -> Mod m
succ Mod m
x = if Mod m
x forall a. Eq a => a -> a -> Bool
== forall a. Bounded a => a
maxBound then forall a e. Exception e => e -> a
throw ArithException
Overflow else coerce :: forall a b. Coercible a b => a -> b
coerce (forall a. Enum a => a -> a
succ @Natural) Mod m
x
pred :: Mod m -> Mod m
pred Mod m
x = if Mod m
x forall a. Eq a => a -> a -> Bool
== forall a. Bounded a => a
minBound then forall a e. Exception e => e -> a
throw ArithException
Underflow else coerce :: forall a b. Coercible a b => a -> b
coerce (forall a. Enum a => a -> a
pred @Natural) Mod m
x
toEnum :: Int -> Mod m
toEnum = forall a b. (Integral a, Num b) => a -> b
fromIntegral :: Int -> Mod m
fromEnum :: Mod m -> Int
fromEnum = (forall a b. (Integral a, Num b) => a -> b
fromIntegral :: Natural -> Int) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: Natural). Mod m -> Natural
unMod
enumFrom :: Mod m -> [Mod m]
enumFrom Mod m
x = forall a. Enum a => a -> a -> [a]
enumFromTo Mod m
x forall a. Bounded a => a
maxBound
enumFromThen :: Mod m -> Mod m -> [Mod m]
enumFromThen Mod m
x Mod m
y = forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo Mod m
x Mod m
y (if Mod m
y forall a. Ord a => a -> a -> Bool
>= Mod m
x then forall a. Bounded a => a
maxBound else forall a. Bounded a => a
minBound)
enumFromTo :: Mod m -> Mod m -> [Mod m]
enumFromTo = coerce :: forall a b. Coercible a b => a -> b
coerce (forall a. Enum a => a -> a -> [a]
enumFromTo @Natural)
enumFromThenTo :: Mod m -> Mod m -> Mod m -> [Mod m]
enumFromThenTo = coerce :: forall a b. Coercible a b => a -> b
coerce (forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo @Natural)
instance KnownNat m => Bounded (Mod m) where
minBound :: Mod m
minBound = Mod m
mx
where
mx :: Mod m
mx = if forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx forall a. Ord a => a -> a -> Bool
> Natural
0 then forall (m :: Natural). Natural -> Mod m
Mod Natural
0 else forall a e. Exception e => e -> a
throw ArithException
DivideByZero
maxBound :: Mod m
maxBound = Mod m
mx
where
mx :: Mod m
mx = if Natural
m forall a. Ord a => a -> a -> Bool
> Natural
0 then forall (m :: Natural). Natural -> Mod m
Mod (Natural
m forall a. Num a => a -> a -> a
- Natural
1) else forall a e. Exception e => e -> a
throw ArithException
DivideByZero
m :: Natural
m = forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx
bigNatToNat :: BigNat# -> Natural
bigNatToNat :: BigNat# -> Natural
bigNatToNat BigNat#
r# =
if Int# -> Bool
isTrue# (BigNat# -> Int#
bigNatSize# BigNat#
r# Int# -> Int# -> Int#
<=# Int#
1#) then Word# -> Natural
NatS# (BigNat# -> Word#
bigNatToWord# BigNat#
r#) else BigNat -> Natural
NatJ# (BigNat# -> BigNat
BN# BigNat#
r#)
subIfGe :: BigNat# -> BigNat# -> Natural
subIfGe :: BigNat# -> BigNat# -> Natural
subIfGe BigNat#
z# BigNat#
m# = case BigNat#
z# BigNat# -> BigNat# -> (# (# #) | BigNat# #)
`bigNatSub` BigNat#
m# of
(# (# #) | #) -> BigNat -> Natural
NatJ# (BigNat# -> BigNat
BN# BigNat#
z#)
(# | BigNat#
zm# #) -> BigNat# -> Natural
bigNatToNat BigNat#
zm#
addMod :: Natural -> Natural -> Natural -> Natural
addMod :: Natural -> Natural -> Natural -> Natural
addMod (NatS# Word#
m#) (NatS# Word#
x#) (NatS# Word#
y#) =
if Int# -> Bool
isTrue# Int#
c# Bool -> Bool -> Bool
|| Int# -> Bool
isTrue# (Word#
z# Word# -> Word# -> Int#
`geWord#` Word#
m#) then Word# -> Natural
NatS# (Word#
z# Word# -> Word# -> Word#
`minusWord#` Word#
m#) else Word# -> Natural
NatS# Word#
z#
where
!(# Word#
z#, Int#
c# #) = Word#
x# Word# -> Word# -> (# Word#, Int# #)
`addWordC#` Word#
y#
addMod NatS#{} Natural
_ Natural
_ = forall a. a
brokenInvariant
addMod (NatJ# (BN# BigNat#
m#)) (NatS# Word#
x#) (NatS# Word#
y#) =
if Int# -> Bool
isTrue# Int#
c# then BigNat# -> BigNat# -> Natural
subIfGe (Word# -> Word# -> BigNat#
bigNatFromWord2# Word#
1## Word#
z#) BigNat#
m# else Word# -> Natural
NatS# Word#
z#
where
!(# Word#
z#, Int#
c# #) = Word#
x# Word# -> Word# -> (# Word#, Int# #)
`addWordC#` Word#
y#
addMod (NatJ# (BN# BigNat#
m#)) (NatS# Word#
x#) (NatJ# (BN# BigNat#
y#)) = BigNat# -> BigNat# -> Natural
subIfGe (BigNat#
y# BigNat# -> Word# -> BigNat#
`bigNatAddWord#` Word#
x#) BigNat#
m#
addMod (NatJ# (BN# BigNat#
m#)) (NatJ# (BN# BigNat#
x#)) (NatS# Word#
y#) = BigNat# -> BigNat# -> Natural
subIfGe (BigNat#
x# BigNat# -> Word# -> BigNat#
`bigNatAddWord#` Word#
y#) BigNat#
m#
addMod (NatJ# (BN# BigNat#
m#)) (NatJ# (BN# BigNat#
x#)) (NatJ# (BN# BigNat#
y#)) = BigNat# -> BigNat# -> Natural
subIfGe (BigNat#
x# BigNat# -> BigNat# -> BigNat#
`bigNatAdd` BigNat#
y#) BigNat#
m#
subMod :: Natural -> Natural -> Natural -> Natural
subMod :: Natural -> Natural -> Natural -> Natural
subMod (NatS# Word#
m#) (NatS# Word#
x#) (NatS# Word#
y#) =
if Int# -> Bool
isTrue# (Word#
x# Word# -> Word# -> Int#
`geWord#` Word#
y#) then Word# -> Natural
NatS# Word#
z# else Word# -> Natural
NatS# (Word#
z# Word# -> Word# -> Word#
`plusWord#` Word#
m#)
where
z# :: Word#
z# = Word#
x# Word# -> Word# -> Word#
`minusWord#` Word#
y#
subMod NatS#{} Natural
_ Natural
_ = forall a. a
brokenInvariant
subMod (NatJ# (BN# BigNat#
m#)) (NatS# Word#
x#) (NatS# Word#
y#) =
if Int# -> Bool
isTrue# (Word#
x# Word# -> Word# -> Int#
`geWord#` Word#
y#)
then Word# -> Natural
NatS# (Word#
x# Word# -> Word# -> Word#
`minusWord#` Word#
y#)
else BigNat# -> Natural
bigNatToNat (BigNat#
m# BigNat# -> Word# -> BigNat#
`bigNatSubWordUnsafe#` (Word#
y# Word# -> Word# -> Word#
`minusWord#` Word#
x#))
subMod (NatJ# (BN# BigNat#
m#)) (NatS# Word#
x#) (NatJ# (BN# BigNat#
y#)) =
BigNat# -> Natural
bigNatToNat (BigNat#
m# BigNat# -> BigNat# -> BigNat#
`bigNatSubUnsafe` BigNat#
y# BigNat# -> Word# -> BigNat#
`bigNatAddWord#` Word#
x#)
subMod NatJ#{} (NatJ# (BN# BigNat#
x#)) (NatS# Word#
y#) =
BigNat# -> Natural
bigNatToNat (BigNat#
x# BigNat# -> Word# -> BigNat#
`bigNatSubWordUnsafe#` Word#
y#)
subMod (NatJ# (BN# BigNat#
m#)) (NatJ# (BN# BigNat#
x#)) (NatJ# (BN# BigNat#
y#)) =
case BigNat#
x# BigNat# -> BigNat# -> (# (# #) | BigNat# #)
`bigNatSub` BigNat#
y# of
(# (# #) | #) -> BigNat# -> Natural
bigNatToNat (BigNat#
m# BigNat# -> BigNat# -> BigNat#
`bigNatSubUnsafe` BigNat#
y# BigNat# -> BigNat# -> BigNat#
`bigNatAdd` BigNat#
x#)
(# | BigNat#
xy# #) -> BigNat# -> Natural
bigNatToNat BigNat#
xy#
negateMod :: Natural -> Natural -> Natural
negateMod :: Natural -> Natural -> Natural
negateMod Natural
_ (NatS# Word#
0##) = Word# -> Natural
NatS# Word#
0##
negateMod (NatS# Word#
m#) (NatS# Word#
x#) = Word# -> Natural
NatS# (Word#
m# Word# -> Word# -> Word#
`minusWord#` Word#
x#)
negateMod NatS#{} Natural
_ = forall a. a
brokenInvariant
negateMod (NatJ# (BN# BigNat#
m#)) (NatS# Word#
x#) = BigNat# -> Natural
bigNatToNat (BigNat#
m# BigNat# -> Word# -> BigNat#
`bigNatSubWordUnsafe#` Word#
x#)
negateMod (NatJ# (BN# BigNat#
m#)) (NatJ# (BN# BigNat#
x#)) = BigNat# -> Natural
bigNatToNat (BigNat#
m# BigNat# -> BigNat# -> BigNat#
`bigNatSubUnsafe` BigNat#
x#)
halfWord :: Word
halfWord :: Word
halfWord = Word
1 forall a. Bits a => a -> Int -> a
`shiftL` (forall b. FiniteBits b => b -> Int
finiteBitSize (Word
0 :: Word) forall a. Bits a => a -> Int -> a
`shiftR` Int
1)
mulMod :: Natural -> Natural -> Natural -> Natural
mulMod :: Natural -> Natural -> Natural -> Natural
mulMod (NatS# Word#
m#) (NatS# Word#
x#) (NatS# Word#
y#)
| Word# -> Word
W# Word#
m# forall a. Ord a => a -> a -> Bool
<= Word
halfWord = Word# -> Natural
NatS# (Word# -> Word# -> Word#
timesWord# Word#
x# Word#
y# Word# -> Word# -> Word#
`remWord#` Word#
m#)
| Bool
otherwise = Word# -> Natural
NatS# Word#
r#
where
!(# Word#
hi#, Word#
lo# #) = Word# -> Word# -> (# Word#, Word# #)
timesWord2# Word#
x# Word#
y#
!r# :: Word#
r# = Word# -> Word# -> Word# -> Word#
remWord2# Word#
lo# Word#
hi# Word#
m#
mulMod NatS#{} Natural
_ Natural
_ = forall a. a
brokenInvariant
mulMod (NatJ# (BN# BigNat#
m#)) (NatS# Word#
x#) (NatS# Word#
y#) =
BigNat# -> Natural
bigNatToNat (Word# -> Word# -> BigNat#
bigNatFromWord2# Word#
z1# Word#
z2# BigNat# -> BigNat# -> BigNat#
`bigNatRem` BigNat#
m#)
where
!(# Word#
z1#, Word#
z2# #) = Word# -> Word# -> (# Word#, Word# #)
timesWord2# Word#
x# Word#
y#
mulMod (NatJ# (BN# BigNat#
m#)) (NatS# Word#
x#) (NatJ# (BN# BigNat#
y#)) =
BigNat# -> Natural
bigNatToNat ((BigNat#
y# BigNat# -> Word# -> BigNat#
`bigNatMulWord#` Word#
x#) BigNat# -> BigNat# -> BigNat#
`bigNatRem` BigNat#
m#)
mulMod (NatJ# (BN# BigNat#
m#)) (NatJ# (BN# BigNat#
x#)) (NatS# Word#
y#) =
BigNat# -> Natural
bigNatToNat ((BigNat#
x# BigNat# -> Word# -> BigNat#
`bigNatMulWord#` Word#
y#) BigNat# -> BigNat# -> BigNat#
`bigNatRem` BigNat#
m#)
mulMod (NatJ# (BN# BigNat#
m#)) (NatJ# (BN# BigNat#
x#)) (NatJ# (BN# BigNat#
y#)) =
BigNat# -> Natural
bigNatToNat ((BigNat#
x# BigNat# -> BigNat# -> BigNat#
`bigNatMul` BigNat#
y#) BigNat# -> BigNat# -> BigNat#
`bigNatRem` BigNat#
m#)
brokenInvariant :: a
brokenInvariant :: forall a. a
brokenInvariant = forall a. HasCallStack => String -> a
error String
"argument is larger than modulus"
instance KnownNat m => Num (Mod m) where
mx :: Mod m
mx@(Mod !Natural
x) + :: Mod m -> Mod m -> Mod m
+ (Mod !Natural
y) = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ Natural -> Natural -> Natural -> Natural
addMod (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx) Natural
x Natural
y
{-# INLINE (+) #-}
mx :: Mod m
mx@(Mod !Natural
x) - :: Mod m -> Mod m -> Mod m
- (Mod !Natural
y) = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ Natural -> Natural -> Natural -> Natural
subMod (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx) Natural
x Natural
y
{-# INLINE (-) #-}
negate :: Mod m -> Mod m
negate mx :: Mod m
mx@(Mod !Natural
x) = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ Natural -> Natural -> Natural
negateMod (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx) Natural
x
{-# INLINE negate #-}
mx :: Mod m
mx@(Mod !Natural
x) * :: Mod m -> Mod m -> Mod m
* (Mod !Natural
y) = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ Natural -> Natural -> Natural -> Natural
mulMod (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx) Natural
x Natural
y
{-# INLINE (*) #-}
abs :: Mod m -> Mod m
abs = forall a. a -> a
id
{-# INLINE abs #-}
signum :: Mod m -> Mod m
signum = forall a b. a -> b -> a
const Mod m
x
where
x :: Mod m
x = if forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
x forall a. Ord a => a -> a -> Bool
> Natural
1 then forall (m :: Natural). Natural -> Mod m
Mod Natural
1 else forall (m :: Natural). Natural -> Mod m
Mod Natural
0
{-# INLINE signum #-}
fromInteger :: Integer -> Mod m
fromInteger Integer
x = Mod m
mx
where
mx :: Mod m
mx = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ forall a. Num a => Integer -> a
fromInteger forall a b. (a -> b) -> a -> b
$ Integer
x forall a. Integral a => a -> a -> a
`mod` forall a. Integral a => a -> Integer
toInteger (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx)
{-# INLINE fromInteger #-}
#ifdef MIN_VERSION_semirings
instance KnownNat m => Semiring (Mod m) where
plus :: Mod m -> Mod m -> Mod m
plus = forall a. Num a => a -> a -> a
(+)
{-# INLINE plus #-}
times :: Mod m -> Mod m -> Mod m
times = forall a. Num a => a -> a -> a
(*)
{-# INLINE times #-}
zero :: Mod m
zero = Mod m
mx
where
mx :: Mod m
mx = if forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx forall a. Ord a => a -> a -> Bool
> Natural
0 then forall (m :: Natural). Natural -> Mod m
Mod Natural
0 else forall a e. Exception e => e -> a
throw ArithException
DivideByZero
{-# INLINE zero #-}
one :: Mod m
one = Mod m
mx
where
mx :: Mod m
mx = case Natural
m forall a. Ord a => a -> a -> Ordering
`compare` Natural
1 of
Ordering
LT -> forall a e. Exception e => e -> a
throw ArithException
DivideByZero
Ordering
EQ -> forall (m :: Natural). Natural -> Mod m
Mod Natural
0
Ordering
GT -> forall (m :: Natural). Natural -> Mod m
Mod Natural
1
m :: Natural
m = forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx
{-# INLINE one #-}
fromNatural :: Natural -> Mod m
fromNatural Natural
x = Mod m
mx
where
mx :: Mod m
mx = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ Natural
x forall a. Integral a => a -> a -> a
`mod` forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx
{-# INLINE fromNatural #-}
instance KnownNat m => Ring (Mod m) where
negate :: Mod m -> Mod m
negate = forall a. Num a => a -> a
Prelude.negate
{-# INLINE negate #-}
instance KnownNat m => GcdDomain (Mod m) where
divide :: Mod m -> Mod m -> Maybe (Mod m)
divide (Mod Natural
0) Mod m
_ = forall a. a -> Maybe a
Just (forall (m :: Natural). Natural -> Mod m
Mod Natural
0)
divide Mod m
_ (Mod Natural
0) = forall a. Maybe a
Nothing
divide mx :: Mod m
mx@(Mod Natural
x) (Mod Natural
y) = case Maybe Natural
mry of
Just Natural
ry -> if Natural
xr forall a. Eq a => a -> a -> Bool
== Natural
0 then forall a. a -> Maybe a
Just (forall (m :: Natural). Natural -> Mod m
Mod Natural
xq forall a. Num a => a -> a -> a
* forall (m :: Natural). Natural -> Mod m
Mod Natural
ry) else forall a. Maybe a
Nothing
Maybe Natural
Nothing -> forall a. Maybe a
Nothing
where
m :: Natural
m = forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx
gmy :: Natural
gmy = forall a. Integral a => a -> a -> a
Prelude.gcd Natural
m Natural
y
(Natural
xq, Natural
xr) = forall a. Integral a => a -> a -> (a, a)
Prelude.quotRem Natural
x Natural
gmy
mry :: Maybe Natural
mry = Natural -> Natural -> Maybe Natural
invertModInternal (Natural
y forall a. Integral a => a -> a -> a
`Prelude.quot` Natural
gmy) (Natural
m forall a. Integral a => a -> a -> a
`Prelude.quot` Natural
gmy)
gcd :: Mod m -> Mod m -> Mod m
gcd (Mod Natural
x) (Mod Natural
y) = Mod m
g
where
m :: Natural
m = forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
g
g :: Mod m
g = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ if Natural
m forall a. Ord a => a -> a -> Bool
> Natural
1 then forall a. Integral a => a -> a -> a
Prelude.gcd (forall a. Integral a => a -> a -> a
Prelude.gcd Natural
m Natural
x) Natural
y else Natural
0
lcm :: Mod m -> Mod m -> Mod m
lcm (Mod Natural
x) (Mod Natural
y) = Mod m
l
where
m :: Natural
m = forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
l
l :: Mod m
l = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ if Natural
m forall a. Ord a => a -> a -> Bool
> Natural
1 then forall a. Integral a => a -> a -> a
Prelude.lcm (forall a. Integral a => a -> a -> a
Prelude.gcd Natural
m Natural
x) (forall a. Integral a => a -> a -> a
Prelude.gcd Natural
m Natural
y) else Natural
0
coprime :: Mod m -> Mod m -> Bool
coprime Mod m
x Mod m
y = forall a. GcdDomain a => a -> a -> a
Data.Euclidean.gcd Mod m
x Mod m
y forall a. Eq a => a -> a -> Bool
== forall a. Semiring a => a
one
instance KnownNat m => Euclidean (Mod m) where
degree :: Mod m -> Natural
degree = forall (m :: Natural). Mod m -> Natural
unMod
{-# INLINABLE degree #-}
quotRem :: Mod m -> Mod m -> (Mod m, Mod m)
quotRem (Mod Natural
0) Mod m
_ = (forall (m :: Natural). Natural -> Mod m
Mod Natural
0, forall (m :: Natural). Natural -> Mod m
Mod Natural
0)
quotRem Mod m
_ (Mod Natural
0) = forall a e. Exception e => e -> a
throw ArithException
DivideByZero
quotRem mx :: Mod m
mx@(Mod Natural
x) (Mod Natural
y) = case Maybe Natural
mry of
Just Natural
ry -> (forall (m :: Natural). Natural -> Mod m
Mod Natural
xq forall a. Num a => a -> a -> a
* forall (m :: Natural). Natural -> Mod m
Mod Natural
ry, forall (m :: Natural). Natural -> Mod m
Mod Natural
xr)
Maybe Natural
Nothing -> forall a e. Exception e => e -> a
throw ArithException
DivideByZero
where
m :: Natural
m = forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx
gmy :: Natural
gmy = forall a. Integral a => a -> a -> a
Prelude.gcd Natural
m Natural
y
(Natural
xq, Natural
xr) = forall a. Integral a => a -> a -> (a, a)
Prelude.quotRem Natural
x Natural
gmy
mry :: Maybe Natural
mry = Natural -> Natural -> Maybe Natural
invertModInternal (Natural
y forall a. Integral a => a -> a -> a
`Prelude.quot` Natural
gmy) (Natural
m forall a. Integral a => a -> a -> a
`Prelude.quot` Natural
gmy)
instance KnownNat m => Field (Mod m)
#endif
instance KnownNat m => Fractional (Mod m) where
fromRational :: Rational -> Mod m
fromRational Rational
r = case forall a. Ratio a -> a
denominator Rational
r of
Integer
1 -> Mod m
num
Integer
den -> Mod m
num forall a. Fractional a => a -> a -> a
/ forall a. Num a => Integer -> a
fromInteger Integer
den
where
num :: Mod m
num = forall a. Num a => Integer -> a
fromInteger (forall a. Ratio a -> a
numerator Rational
r)
{-# INLINE fromRational #-}
recip :: Mod m -> Mod m
recip Mod m
mx = case forall (m :: Natural). KnownNat m => Mod m -> Maybe (Mod m)
invertMod Mod m
mx of
Maybe (Mod m)
Nothing -> forall a e. Exception e => e -> a
throw ArithException
DivideByZero
Just Mod m
y -> Mod m
y
{-# INLINE recip #-}
invertMod :: KnownNat m => Mod m -> Maybe (Mod m)
invertMod :: forall (m :: Natural). KnownNat m => Mod m -> Maybe (Mod m)
invertMod Mod m
x = forall (m :: Natural). Natural -> Mod m
Mod forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Natural -> Natural -> Maybe Natural
invertModInternal (forall (m :: Natural). Mod m -> Natural
unMod Mod m
x) (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
x)
{-# INLINABLE invertMod #-}
invertModInternal
:: Natural
-> Natural
-> Maybe Natural
invertModInternal :: Natural -> Natural -> Maybe Natural
invertModInternal Natural
x Natural
m = case Integer -> Natural -> (# Natural | () #)
integerRecipMod# (forall a. Integral a => a -> Integer
toInteger Natural
x) Natural
m of
(# | () #) -> forall a. Maybe a
Nothing
(# Natural
y | #) -> forall a. a -> Maybe a
Just Natural
y
{-# INLINABLE invertModInternal #-}
(^%) :: (KnownNat m, Integral a) => Mod m -> a -> Mod m
Mod m
mx ^% :: forall (m :: Natural) a.
(KnownNat m, Integral a) =>
Mod m -> a -> Mod m
^% a
a
| a
a forall a. Ord a => a -> a -> Bool
< a
0 = case forall (m :: Natural). KnownNat m => Mod m -> Maybe (Mod m)
invertMod Mod m
mx of
Maybe (Mod m)
Nothing -> forall a e. Exception e => e -> a
throw ArithException
DivideByZero
Just Mod m
my -> forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ Natural -> Natural -> Natural -> Natural
powModNatural (forall (m :: Natural). Mod m -> Natural
unMod Mod m
my) (a -> Natural
fromIntegral' (-a
a)) (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx)
| Bool
otherwise = forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ Natural -> Natural -> Natural -> Natural
powModNatural (forall (m :: Natural). Mod m -> Natural
unMod Mod m
mx) (a -> Natural
fromIntegral' a
a) (forall (n :: Natural) (proxy :: Natural -> *).
KnownNat n =>
proxy n -> Natural
natVal Mod m
mx)
where
#if __GLASGOW_HASKELL__ == 900 && __GLASGOW_HASKELL_PATCHLEVEL1__ == 1
fromIntegral' = fromInteger . toInteger
#else
fromIntegral' :: a -> Natural
fromIntegral' = forall a b. (Integral a, Num b) => a -> b
fromIntegral
#endif
{-# INLINABLE [1] (^%) #-}
{-# SPECIALISE [1] (^%) ::
KnownNat m => Mod m -> Integer -> Mod m,
KnownNat m => Mod m -> Natural -> Mod m,
KnownNat m => Mod m -> Int -> Mod m,
KnownNat m => Mod m -> Word -> Mod m #-}
{-# RULES
"powMod/2/Integer" forall x. x ^% (2 :: Integer) = let u = x in u*u
"powMod/3/Integer" forall x. x ^% (3 :: Integer) = let u = x in u*u*u
"powMod/2/Int" forall x. x ^% (2 :: Int) = let u = x in u*u
"powMod/3/Int" forall x. x ^% (3 :: Int) = let u = x in u*u*u
"powMod/2/Word" forall x. x ^% (2 :: Word) = let u = x in u*u
"powMod/3/Word" forall x. x ^% (3 :: Word) = let u = x in u*u*u #-}
infixr 8 ^%
wordSize :: Int
wordSize :: Int
wordSize = forall b. FiniteBits b => b -> Int
finiteBitSize (Word
0 :: Word)
lgWordSize :: Int
lgWordSize :: Int
lgWordSize = case Int
wordSize of
Int
32 -> Int
2
Int
64 -> Int
3
Int
_ -> forall a. HasCallStack => String -> a
error String
"lgWordSize: unknown architecture"
instance KnownNat m => Storable (Mod m) where
sizeOf :: Mod m -> Int
sizeOf Mod m
_ = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> forall a. Storable a => a -> Int
sizeOf (Word
0 :: Word)
NatJ# (BN# BigNat#
m#) -> Int# -> Int
I# (BigNat# -> Int#
bigNatSize# BigNat#
m#) forall a. Bits a => a -> Int -> a
`shiftL` Int
lgWordSize
{-# INLINE sizeOf #-}
alignment :: Mod m -> Int
alignment Mod m
_ = forall a. Storable a => a -> Int
alignment (Word
0 :: Word)
{-# INLINE alignment #-}
peek :: Ptr (Mod m) -> IO (Mod m)
peek (Ptr Addr#
addr#) = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> do
W# Word#
w# <- forall a. Storable a => Ptr a -> IO a
peek (forall a. Addr# -> Ptr a
Ptr Addr#
addr#)
forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$! Word# -> Natural
NatS# Word#
w#
NatJ# (BN# BigNat#
m#) -> do
let !(I# Int#
lgWordSize#) = Int
lgWordSize
sz# :: Int#
sz# = BigNat# -> Int#
bigNatSize# BigNat#
m# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
BN# BigNat#
bn <- forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO (\State# RealWorld
token -> case forall s. Word# -> Addr# -> State# s -> (# State# s, BigNat# #)
bigNatFromAddrLE# (Int# -> Word#
int2Word# Int#
sz#) Addr#
addr# State# RealWorld
token of (# State# RealWorld
newToken, BigNat#
bn# #) -> (# State# RealWorld
newToken, BigNat# -> BigNat
BN# BigNat#
bn# #))
forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$! BigNat# -> Natural
bigNatToNat BigNat#
bn
{-# INLINE peek #-}
poke :: Ptr (Mod m) -> Mod m -> IO ()
poke (Ptr Addr#
addr#) (Mod Natural
x) = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> case Natural
x of
NatS# Word#
x# -> forall a. Storable a => Ptr a -> a -> IO ()
poke (forall a. Addr# -> Ptr a
Ptr Addr#
addr#) (Word# -> Word
W# Word#
x#)
Natural
_ -> forall a. a
brokenInvariant
NatJ# (BN# BigNat#
m#) -> case Natural
x of
NatS# Word#
x# -> do
forall a. Storable a => Ptr a -> a -> IO ()
poke (forall a. Addr# -> Ptr a
Ptr Addr#
addr#) (Word# -> Word
W# Word#
x#)
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [Int
1 .. Int
sz forall a. Num a => a -> a -> a
- Int
1] forall a b. (a -> b) -> a -> b
$ \Int
off ->
forall a. Storable a => Ptr a -> Int -> a -> IO ()
pokeElemOff (forall a. Addr# -> Ptr a
Ptr Addr#
addr#) Int
off (Word
0 :: Word)
NatJ# (BN# BigNat#
bn) -> do
Word
l <- forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO (\State# RealWorld
token -> case forall s. BigNat# -> Addr# -> State# s -> (# State# s, Word# #)
bigNatToAddrLE# BigNat#
bn Addr#
addr# State# RealWorld
token of (# State# RealWorld
newToken, Word#
l# #) -> (# State# RealWorld
newToken, Word# -> Word
W# Word#
l# #))
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [(forall a b. (Integral a, Num b) => a -> b
fromIntegral :: Word -> Int) Word
l .. (Int
sz forall a. Bits a => a -> Int -> a
`shiftL` Int
lgWordSize) forall a. Num a => a -> a -> a
- Int
1] forall a b. (a -> b) -> a -> b
$ \Int
off ->
forall a. Storable a => Ptr a -> Int -> a -> IO ()
pokeElemOff (forall a. Addr# -> Ptr a
Ptr Addr#
addr#) Int
off (Word8
0 :: Word8)
where
sz :: Int
sz = Int# -> Int
I# (BigNat# -> Int#
bigNatSize# BigNat#
m#)
{-# INLINE poke #-}
#ifdef MIN_VERSION_vector
instance KnownNat m => P.Prim (Mod m) where
sizeOf# :: Mod m -> Int#
sizeOf# Mod m
x = let !(I# Int#
sz#) = forall a. Storable a => a -> Int
sizeOf Mod m
x in Int#
sz#
{-# INLINE sizeOf# #-}
alignment# :: Mod m -> Int#
alignment# Mod m
x = let !(I# Int#
a#) = forall a. Storable a => a -> Int
alignment Mod m
x in Int#
a#
{-# INLINE alignment# #-}
indexByteArray# :: BigNat# -> Int# -> Mod m
indexByteArray# BigNat#
arr# Int#
i' = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> forall (m :: Natural). Natural -> Mod m
Mod (Word# -> Natural
NatS# Word#
w#)
where
!(W# Word#
w#) = forall a. Prim a => BigNat# -> Int# -> a
P.indexByteArray# BigNat#
arr# Int#
i'
NatJ# (BN# BigNat#
m#) -> forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ BigNat# -> Natural
bigNatToNat (forall o. (State# RealWorld -> o) -> o
runRW# (\State# RealWorld
token -> case forall s.
Word# -> BigNat# -> Word# -> State# s -> (# State# s, BigNat# #)
bigNatFromByteArrayLE# (Int# -> Word#
int2Word# Int#
sz#) BigNat#
arr# (Int# -> Word#
int2Word# Int#
i#) State# RealWorld
token of (# State# RealWorld
_, BigNat#
bn# #) -> BigNat#
bn#))
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
sz# :: Int#
sz# = BigNat# -> Int#
bigNatSize# BigNat#
m# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
i# :: Int#
i# = Int#
i' Int# -> Int# -> Int#
*# Int#
sz#
{-# INLINE indexByteArray# #-}
indexOffAddr# :: Addr# -> Int# -> Mod m
indexOffAddr# Addr#
arr# Int#
i' = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> forall (m :: Natural). Natural -> Mod m
Mod (Word# -> Natural
NatS# Word#
w#)
where
!(W# Word#
w#) = forall a. Prim a => Addr# -> Int# -> a
P.indexOffAddr# Addr#
arr# Int#
i'
NatJ# (BN# BigNat#
m#) -> forall (m :: Natural). Natural -> Mod m
Mod forall a b. (a -> b) -> a -> b
$ BigNat# -> Natural
bigNatToNat (forall o. (State# RealWorld -> o) -> o
runRW# (\State# RealWorld
token -> case forall s. Word# -> Addr# -> State# s -> (# State# s, BigNat# #)
bigNatFromAddrLE# (Int# -> Word#
int2Word# Int#
sz#) (Addr#
arr# Addr# -> Int# -> Addr#
`plusAddr#` Int#
i#) State# RealWorld
token of (# State# RealWorld
_, BigNat#
bn# #) -> BigNat#
bn#))
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
sz# :: Int#
sz# = BigNat# -> Int#
bigNatSize# BigNat#
m# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
i# :: Int#
i# = Int#
i' Int# -> Int# -> Int#
*# Int#
sz#
{-# INLINE indexOffAddr# #-}
readByteArray# :: forall s.
MutableByteArray# s -> Int# -> State# s -> (# State# s, Mod m #)
readByteArray# MutableByteArray# s
marr !Int#
i' State# s
token = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> case forall a s.
Prim a =>
MutableByteArray# s -> Int# -> State# s -> (# State# s, a #)
P.readByteArray# MutableByteArray# s
marr Int#
i' State# s
token of
(# State# s
newToken, W# Word#
w# #) -> (# State# s
newToken, forall (m :: Natural). Natural -> Mod m
Mod (Word# -> Natural
NatS# Word#
w#) #)
NatJ# (BN# BigNat#
m#) -> case forall d.
MutableByteArray# d -> State# d -> (# State# d, BigNat# #)
unsafeFreezeByteArray# MutableByteArray# s
marr State# s
token of
(# State# s
newToken, BigNat#
arr #) -> case forall s.
Word# -> BigNat# -> Word# -> State# s -> (# State# s, BigNat# #)
bigNatFromByteArrayLE# (Int# -> Word#
int2Word# Int#
sz#) BigNat#
arr (Int# -> Word#
int2Word# Int#
i#) State# s
newToken of
(# State# s
veryNewToken, BigNat#
bn# #) -> (# State# s
veryNewToken,forall (m :: Natural). Natural -> Mod m
Mod (BigNat# -> Natural
bigNatToNat BigNat#
bn#) #)
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
sz# :: Int#
sz# = BigNat# -> Int#
bigNatSize# BigNat#
m# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
i# :: Int#
i# = Int#
i' Int# -> Int# -> Int#
*# Int#
sz#
{-# INLINE readByteArray# #-}
readOffAddr# :: forall s. Addr# -> Int# -> State# s -> (# State# s, Mod m #)
readOffAddr# Addr#
marr !Int#
i' State# s
token = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> case forall a s.
Prim a =>
Addr# -> Int# -> State# s -> (# State# s, a #)
P.readOffAddr# Addr#
marr Int#
i' State# s
token of
(# State# s
newToken, W# Word#
w# #) -> (# State# s
newToken, forall (m :: Natural). Natural -> Mod m
Mod (Word# -> Natural
NatS# Word#
w#) #)
NatJ# (BN# BigNat#
m#) -> case forall s. Word# -> Addr# -> State# s -> (# State# s, BigNat# #)
bigNatFromAddrLE# (Int# -> Word#
int2Word# Int#
sz#) (Addr#
marr Addr# -> Int# -> Addr#
`plusAddr#` Int#
i#) State# s
token of
(# State# s
newToken, BigNat#
bn #) -> (# State# s
newToken, forall (m :: Natural). Natural -> Mod m
Mod (BigNat# -> Natural
bigNatToNat BigNat#
bn) #)
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
sz# :: Int#
sz# = BigNat# -> Int#
bigNatSize# BigNat#
m# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
i# :: Int#
i# = Int#
i' Int# -> Int# -> Int#
*# Int#
sz#
{-# INLINE readOffAddr# #-}
writeByteArray# :: forall s.
MutableByteArray# s -> Int# -> Mod m -> State# s -> State# s
writeByteArray# MutableByteArray# s
marr !Int#
i' !(Mod Natural
x) State# s
token = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> case Natural
x of
NatS# Word#
x# -> forall a s.
Prim a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
P.writeByteArray# MutableByteArray# s
marr Int#
i' (Word# -> Word
W# Word#
x#) State# s
token
Natural
_ -> forall a. HasCallStack => String -> a
error String
"argument is larger than modulus"
NatJ# (BN# BigNat#
m#) -> case Natural
x of
NatS# Word#
x# -> case forall a s.
Prim a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
P.writeByteArray# MutableByteArray# s
marr Int#
i# (Word# -> Word
W# Word#
x#) State# s
token of
State# s
newToken -> forall a s.
Prim a =>
MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s
P.setByteArray# MutableByteArray# s
marr (Int#
i# Int# -> Int# -> Int#
+# Int#
1#) (Int#
sz# Int# -> Int# -> Int#
-# Int#
1#) (Word
0 :: Word) State# s
newToken
NatJ# (BN# BigNat#
bn) -> case forall s.
BigNat#
-> MutableByteArray# s
-> Word#
-> State# s
-> (# State# s, Word# #)
bigNatToMutableByteArrayLE# BigNat#
bn (unsafeCoerce# :: forall a b. a -> b
unsafeCoerce# MutableByteArray# s
marr) (Int# -> Word#
int2Word# (Int#
i# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#)) State# s
token of
(# State# s
newToken, Word#
l# #) -> forall a s.
Prim a =>
MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s
P.setByteArray# MutableByteArray# s
marr (Int#
i# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize# Int# -> Int# -> Int#
+# Word# -> Int#
word2Int# Word#
l#) (Int#
sz# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize# Int# -> Int# -> Int#
-# Word# -> Int#
word2Int# Word#
l#) (Word8
0 :: Word8) State# s
newToken
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
!sz :: Int
sz@(I# Int#
sz#) = Int# -> Int
I# (BigNat# -> Int#
bigNatSize# BigNat#
m#)
!(I# Int#
i#) = Int# -> Int
I# Int#
i' forall a. Num a => a -> a -> a
* Int
sz
{-# INLINE writeByteArray# #-}
writeOffAddr# :: forall s. Addr# -> Int# -> Mod m -> State# s -> State# s
writeOffAddr# Addr#
marr !Int#
i' !(Mod Natural
x) State# s
token = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> case Natural
x of
NatS# Word#
x# -> forall a s. Prim a => Addr# -> Int# -> a -> State# s -> State# s
P.writeOffAddr# Addr#
marr Int#
i' (Word# -> Word
W# Word#
x#) State# s
token
Natural
_ -> forall a. HasCallStack => String -> a
error String
"argument is larger than modulus"
NatJ# (BN# BigNat#
m#) -> case Natural
x of
NatS# Word#
x# -> case forall a s. Prim a => Addr# -> Int# -> a -> State# s -> State# s
P.writeOffAddr# Addr#
marr Int#
i# (Word# -> Word
W# Word#
x#) State# s
token of
State# s
newToken -> forall a s.
Prim a =>
Addr# -> Int# -> Int# -> a -> State# s -> State# s
P.setOffAddr# Addr#
marr (Int#
i# Int# -> Int# -> Int#
+# Int#
1#) (Int#
sz# Int# -> Int# -> Int#
-# Int#
1#) (Word
0 :: Word) State# s
newToken
NatJ# (BN# BigNat#
bn) -> case forall s. BigNat# -> Addr# -> State# s -> (# State# s, Word# #)
bigNatToAddrLE# BigNat#
bn (Addr#
marr Addr# -> Int# -> Addr#
`plusAddr#` (Int#
i# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#)) State# s
token of
(# State# s
newToken, Word#
l# #) -> forall a s.
Prim a =>
Addr# -> Int# -> Int# -> a -> State# s -> State# s
P.setOffAddr# Addr#
marr (Int#
i# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize# Int# -> Int# -> Int#
+# Word# -> Int#
word2Int# Word#
l#) (Int#
sz# Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize# Int# -> Int# -> Int#
-# Word# -> Int#
word2Int# Word#
l#) (Word8
0 :: Word8) State# s
newToken
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
!sz :: Int
sz@(I# Int#
sz#) = Int# -> Int
I# (BigNat# -> Int#
bigNatSize# BigNat#
m#)
!(I# Int#
i#) = Int# -> Int
I# Int#
i' forall a. Num a => a -> a -> a
* Int
sz
{-# INLINE writeOffAddr# #-}
setByteArray# :: forall s.
MutableByteArray# s
-> Int# -> Int# -> Mod m -> State# s -> State# s
setByteArray# !MutableByteArray# s
_ !Int#
_ Int#
0# !Mod m
_ State# s
token = State# s
token
setByteArray# MutableByteArray# s
marr Int#
off Int#
len mx :: Mod m
mx@(Mod Natural
x) State# s
token = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> case Natural
x of
NatS# Word#
x# -> forall a s.
Prim a =>
MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s
P.setByteArray# MutableByteArray# s
marr Int#
off Int#
len (Word# -> Word
W# Word#
x#) State# s
token
Natural
_ -> forall a. HasCallStack => String -> a
error String
"argument is larger than modulus"
NatJ# (BN# BigNat#
m#) -> case forall a s.
Prim a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
P.writeByteArray# MutableByteArray# s
marr Int#
off Mod m
mx State# s
token of
State# s
newToken -> Int# -> State# s -> State# s
doSet (Int#
sz Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#) State# s
newToken
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
sz :: Int#
sz = BigNat# -> Int#
bigNatSize# BigNat#
m#
off' :: Int#
off' = (Int#
off Int# -> Int# -> Int#
*# Int#
sz) Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
len' :: Int#
len' = (Int#
len Int# -> Int# -> Int#
*# Int#
sz) Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
doSet :: Int# -> State# s -> State# s
doSet Int#
i State# s
tkn
| Int# -> Bool
isTrue# (Int#
2# Int# -> Int# -> Int#
*# Int#
i Int# -> Int# -> Int#
<# Int#
len') = case forall d.
MutableByteArray# d
-> Int#
-> MutableByteArray# d
-> Int#
-> Int#
-> State# d
-> State# d
copyMutableByteArray# MutableByteArray# s
marr Int#
off' MutableByteArray# s
marr (Int#
off' Int# -> Int# -> Int#
+# Int#
i) Int#
i State# s
tkn of
State# s
tkn' -> Int# -> State# s -> State# s
doSet (Int#
2# Int# -> Int# -> Int#
*# Int#
i) State# s
tkn'
| Bool
otherwise = forall d.
MutableByteArray# d
-> Int#
-> MutableByteArray# d
-> Int#
-> Int#
-> State# d
-> State# d
copyMutableByteArray# MutableByteArray# s
marr Int#
off' MutableByteArray# s
marr (Int#
off' Int# -> Int# -> Int#
+# Int#
i) (Int#
len' Int# -> Int# -> Int#
-# Int#
i) State# s
tkn
{-# INLINE setByteArray# #-}
setOffAddr# :: forall s. Addr# -> Int# -> Int# -> Mod m -> State# s -> State# s
setOffAddr# !Addr#
_ !Int#
_ Int#
0# !Mod m
_ State# s
token = State# s
token
setOffAddr# Addr#
marr Int#
off Int#
len mx :: Mod m
mx@(Mod Natural
x) State# s
token = case forall (n :: Natural). KnownNat n => Proxy# n -> Natural
natVal' (forall {k} (a :: k). Proxy# a
proxy# :: Proxy# m) of
NatS#{} -> case Natural
x of
NatS# Word#
x# -> forall a s.
Prim a =>
Addr# -> Int# -> Int# -> a -> State# s -> State# s
P.setOffAddr# Addr#
marr Int#
off Int#
len (Word# -> Word
W# Word#
x#) State# s
token
Natural
_ -> forall a. HasCallStack => String -> a
error String
"argument is larger than modulus"
NatJ# (BN# BigNat#
m#) -> case forall a s. Prim a => Addr# -> Int# -> a -> State# s -> State# s
P.writeOffAddr# Addr#
marr Int#
off Mod m
mx State# s
token of
State# s
newToken -> Int# -> State# s -> State# s
doSet (Int#
sz Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#) State# s
newToken
where
!(I# Int#
lgWordSize#) = Int
lgWordSize
sz :: Int#
sz = BigNat# -> Int#
bigNatSize# BigNat#
m#
off' :: Int#
off' = (Int#
off Int# -> Int# -> Int#
*# Int#
sz) Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
len' :: Int#
len' = (Int#
len Int# -> Int# -> Int#
*# Int#
sz) Int# -> Int# -> Int#
`iShiftL#` Int#
lgWordSize#
doSet :: Int# -> State# s -> State# s
doSet Int#
i State# s
tkn
| Int# -> Bool
isTrue# (Int#
2# Int# -> Int# -> Int#
*# Int#
i Int# -> Int# -> Int#
<# Int#
len') = case forall (m :: * -> *) a.
PrimBase m =>
m a -> State# (PrimState m) -> (# State# (PrimState m), a #)
internal (forall (m :: * -> *) a. PrimMonad m => IO a -> m a
unsafeIOToPrim (forall a. Ptr a -> Ptr a -> Int -> IO ()
copyBytes (forall a. Addr# -> Ptr a
Ptr (Addr#
marr Addr# -> Int# -> Addr#
`plusAddr#` (Int#
off' Int# -> Int# -> Int#
+# Int#
i))) (forall a. Addr# -> Ptr a
Ptr (Addr#
marr Addr# -> Int# -> Addr#
`plusAddr#` Int#
off')) (Int# -> Int
I# Int#
i)) :: ST s ()) State# s
tkn of
(# State# (PrimState (ST s))
tkn', () #) -> Int# -> State# s -> State# s
doSet (Int#
2# Int# -> Int# -> Int#
*# Int#
i) State# (PrimState (ST s))
tkn'
| Bool
otherwise = case forall (m :: * -> *) a.
PrimBase m =>
m a -> State# (PrimState m) -> (# State# (PrimState m), a #)
internal (forall (m :: * -> *) a. PrimMonad m => IO a -> m a
unsafeIOToPrim (forall a. Ptr a -> Ptr a -> Int -> IO ()
copyBytes (forall a. Addr# -> Ptr a
Ptr (Addr#
marr Addr# -> Int# -> Addr#
`plusAddr#` (Int#
off' Int# -> Int# -> Int#
+# Int#
i))) (forall a. Addr# -> Ptr a
Ptr (Addr#
marr Addr# -> Int# -> Addr#
`plusAddr#` Int#
off')) (Int# -> Int
I# (Int#
len' Int# -> Int# -> Int#
-# Int#
i))) :: ST s ()) State# s
tkn of
(# State# (PrimState (ST s))
tkn', () #) -> State# (PrimState (ST s))
tkn'
{-# INLINE setOffAddr# #-}
newtype instance U.MVector s (Mod m) = ModMVec (P.MVector s (Mod m))
newtype instance U.Vector (Mod m) = ModVec (P.Vector (Mod m))
instance KnownNat m => U.Unbox (Mod m)
instance KnownNat m => M.MVector U.MVector (Mod m) where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicInitialize #-}
{-# INLINE basicUnsafeReplicate #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
{-# INLINE basicClear #-}
{-# INLINE basicSet #-}
{-# INLINE basicUnsafeCopy #-}
{-# INLINE basicUnsafeGrow #-}
basicLength :: forall s. MVector s (Mod m) -> Int
basicLength (ModMVec MVector s (Mod m)
v) = forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
M.basicLength MVector s (Mod m)
v
basicUnsafeSlice :: forall s. Int -> Int -> MVector s (Mod m) -> MVector s (Mod m)
basicUnsafeSlice Int
i Int
n (ModMVec MVector s (Mod m)
v) = forall s (m :: Natural). MVector s (Mod m) -> MVector s (Mod m)
ModMVec forall a b. (a -> b) -> a -> b
$ forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
M.basicUnsafeSlice Int
i Int
n MVector s (Mod m)
v
basicOverlaps :: forall s. MVector s (Mod m) -> MVector s (Mod m) -> Bool
basicOverlaps (ModMVec MVector s (Mod m)
v1) (ModMVec MVector s (Mod m)
v2) = forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> Bool
M.basicOverlaps MVector s (Mod m)
v1 MVector s (Mod m)
v2
basicUnsafeNew :: forall s. Int -> ST s (MVector s (Mod m))
basicUnsafeNew Int
n = forall s (m :: Natural). MVector s (Mod m) -> MVector s (Mod m)
ModMVec forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` forall (v :: * -> * -> *) a s. MVector v a => Int -> ST s (v s a)
M.basicUnsafeNew Int
n
basicInitialize :: forall s. MVector s (Mod m) -> ST s ()
basicInitialize (ModMVec MVector s (Mod m)
v) = forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
M.basicInitialize MVector s (Mod m)
v
basicUnsafeReplicate :: forall s. Int -> Mod m -> ST s (MVector s (Mod m))
basicUnsafeReplicate Int
n Mod m
x = forall s (m :: Natural). MVector s (Mod m) -> MVector s (Mod m)
ModMVec forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> a -> ST s (v s a)
M.basicUnsafeReplicate Int
n Mod m
x
basicUnsafeRead :: forall s. MVector s (Mod m) -> Int -> ST s (Mod m)
basicUnsafeRead (ModMVec MVector s (Mod m)
v) Int
i = forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s a
M.basicUnsafeRead MVector s (Mod m)
v Int
i
basicUnsafeWrite :: forall s. MVector s (Mod m) -> Int -> Mod m -> ST s ()
basicUnsafeWrite (ModMVec MVector s (Mod m)
v) Int
i Mod m
x = forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> a -> ST s ()
M.basicUnsafeWrite MVector s (Mod m)
v Int
i Mod m
x
basicClear :: forall s. MVector s (Mod m) -> ST s ()
basicClear (ModMVec MVector s (Mod m)
v) = forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
M.basicClear MVector s (Mod m)
v
basicSet :: forall s. MVector s (Mod m) -> Mod m -> ST s ()
basicSet (ModMVec MVector s (Mod m)
v) Mod m
x = forall (v :: * -> * -> *) a s. MVector v a => v s a -> a -> ST s ()
M.basicSet MVector s (Mod m)
v Mod m
x
basicUnsafeCopy :: forall s. MVector s (Mod m) -> MVector s (Mod m) -> ST s ()
basicUnsafeCopy (ModMVec MVector s (Mod m)
v1) (ModMVec MVector s (Mod m)
v2) = forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
M.basicUnsafeCopy MVector s (Mod m)
v1 MVector s (Mod m)
v2
basicUnsafeMove :: forall s. MVector s (Mod m) -> MVector s (Mod m) -> ST s ()
basicUnsafeMove (ModMVec MVector s (Mod m)
v1) (ModMVec MVector s (Mod m)
v2) = forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> ST s ()
M.basicUnsafeMove MVector s (Mod m)
v1 MVector s (Mod m)
v2
basicUnsafeGrow :: forall s. MVector s (Mod m) -> Int -> ST s (MVector s (Mod m))
basicUnsafeGrow (ModMVec MVector s (Mod m)
v) Int
n = forall s (m :: Natural). MVector s (Mod m) -> MVector s (Mod m)
ModMVec forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s (v s a)
M.basicUnsafeGrow MVector s (Mod m)
v Int
n
instance KnownNat m => G.Vector U.Vector (Mod m) where
{-# INLINE basicUnsafeFreeze #-}
{-# INLINE basicUnsafeThaw #-}
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicUnsafeIndexM #-}
{-# INLINE elemseq #-}
basicUnsafeFreeze :: forall s. Mutable Vector s (Mod m) -> ST s (Vector (Mod m))
basicUnsafeFreeze (ModMVec MVector s (Mod m)
v) = forall (m :: Natural). Vector (Mod m) -> Vector (Mod m)
ModVec forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` forall (v :: * -> *) a s. Vector v a => Mutable v s a -> ST s (v a)
G.basicUnsafeFreeze MVector s (Mod m)
v
basicUnsafeThaw :: forall s. Vector (Mod m) -> ST s (Mutable Vector s (Mod m))
basicUnsafeThaw (ModVec Vector (Mod m)
v) = forall s (m :: Natural). MVector s (Mod m) -> MVector s (Mod m)
ModMVec forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` forall (v :: * -> *) a s. Vector v a => v a -> ST s (Mutable v s a)
G.basicUnsafeThaw Vector (Mod m)
v
basicLength :: Vector (Mod m) -> Int
basicLength (ModVec Vector (Mod m)
v) = forall (v :: * -> *) a. Vector v a => v a -> Int
G.basicLength Vector (Mod m)
v
basicUnsafeSlice :: Int -> Int -> Vector (Mod m) -> Vector (Mod m)
basicUnsafeSlice Int
i Int
n (ModVec Vector (Mod m)
v) = forall (m :: Natural). Vector (Mod m) -> Vector (Mod m)
ModVec forall a b. (a -> b) -> a -> b
$ forall (v :: * -> *) a. Vector v a => Int -> Int -> v a -> v a
G.basicUnsafeSlice Int
i Int
n Vector (Mod m)
v
basicUnsafeIndexM :: Vector (Mod m) -> Int -> Box (Mod m)
basicUnsafeIndexM (ModVec Vector (Mod m)
v) Int
i = forall (v :: * -> *) a. Vector v a => v a -> Int -> Box a
G.basicUnsafeIndexM Vector (Mod m)
v Int
i
basicUnsafeCopy :: forall s. Mutable Vector s (Mod m) -> Vector (Mod m) -> ST s ()
basicUnsafeCopy (ModMVec MVector s (Mod m)
mv) (ModVec Vector (Mod m)
v) = forall (v :: * -> *) a s.
Vector v a =>
Mutable v s a -> v a -> ST s ()
G.basicUnsafeCopy MVector s (Mod m)
mv Vector (Mod m)
v
elemseq :: forall b. Vector (Mod m) -> Mod m -> b -> b
elemseq Vector (Mod m)
_ = seq :: forall a b. a -> b -> b
seq
#endif