{-| Module : Control.Monad.Bayes.Inference.PMMH Description : Particle Marginal Metropolis-Hastings (PMMH) Copyright : (c) Adam Scibior, 2015-2020 License : MIT Maintainer : leonhard.markert@tweag.io Stability : experimental Portability : GHC Particle Marginal Metropolis-Hastings (PMMH) sampling. Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. 2010. Particle Markov chain Monte Carlo Methods. /Journal of the Royal Statistical Society/ 72 (2010), 269-342. <http://www.stats.ox.ac.uk/~doucet/andrieu_doucet_holenstein_PMCMC.pdf> -} module Control.Monad.Bayes.Inference.PMMH ( pmmh ) where import Numeric.Log import Control.Monad.Trans (lift) import Control.Monad.Bayes.Class import Control.Monad.Bayes.Sequential import Control.Monad.Bayes.Population as Pop import Control.Monad.Bayes.Traced import Control.Monad.Bayes.Inference.SMC -- | Particle Marginal Metropolis-Hastings sampling. pmmh :: MonadInfer m => Int -- ^ number of Metropolis-Hastings steps -> Int -- ^ number of time steps -> Int -- ^ number of particles -> Traced m b -- ^ model parameters prior -> (b -> Sequential (Population m) a) -- ^ model -> m [[(a, Log Double)]] pmmh t k n param model = mh t (param >>= runPopulation . pushEvidence . Pop.hoist lift . smcSystematic k n . model)