{-# LANGUAGE Haskell2010, ConstraintKinds, FlexibleInstances, Trustworthy #-}
module Data.Monoid.Factorial (
module Data.Semigroup.Factorial,
FactorialMonoid(..), StableFactorialMonoid,
)
where
import Control.Arrow (first)
import Data.Monoid
import qualified Data.Foldable as Foldable
import qualified Data.List as List
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Lazy as LazyByteString
import qualified Data.Text as Text
import qualified Data.Text.Lazy as LazyText
import qualified Data.IntMap as IntMap
import qualified Data.IntSet as IntSet
import qualified Data.Map as Map
import qualified Data.Sequence as Sequence
import qualified Data.Set as Set
import qualified Data.Vector as Vector
import Data.Int (Int64)
import Data.Semigroup.Factorial
import Data.Monoid.Null (MonoidNull(null), PositiveMonoid)
import Prelude hiding (break, drop, dropWhile, foldl, foldr, last, length, map, max, min,
null, reverse, span, splitAt, take, takeWhile)
class (Factorial m, MonoidNull m) => FactorialMonoid m where
splitPrimePrefix :: m -> Maybe (m, m)
splitPrimeSuffix :: m -> Maybe (m, m)
inits :: m -> [m]
tails :: m -> [m]
span :: (m -> Bool) -> m -> (m, m)
break :: (m -> Bool) -> m -> (m, m)
split :: (m -> Bool) -> m -> [m]
takeWhile :: (m -> Bool) -> m -> m
dropWhile :: (m -> Bool) -> m -> m
spanMaybe :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
splitAt :: Int -> m -> (m, m)
drop :: Int -> m -> m
take :: Int -> m -> m
splitPrimePrefix x = case factors x
of [] -> Nothing
prefix : rest -> Just (prefix, mconcat rest)
splitPrimeSuffix x = case factors x
of [] -> Nothing
fs -> Just (mconcat (List.init fs), List.last fs)
inits = foldr (\m l-> mempty : List.map (mappend m) l) [mempty]
tails m = m : maybe [] (tails . snd) (splitPrimePrefix m)
span p m0 = spanAfter id m0
where spanAfter f m = case splitPrimePrefix m
of Just (prime, rest) | p prime -> spanAfter (f . mappend prime) rest
_ -> (f mempty, m)
break = span . (not .)
spanMaybe s0 f m0 = spanAfter id s0 m0
where spanAfter g s m = case splitPrimePrefix m
of Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest
| otherwise -> (g mempty, m, s)
Nothing -> (m0, m, s)
spanMaybe' s0 f m0 = spanAfter id s0 m0
where spanAfter g s m = seq s $
case splitPrimePrefix m
of Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest
| otherwise -> (g mempty, m, s)
Nothing -> (m0, m, s)
split p m = prefix : splitRest
where (prefix, rest) = break p m
splitRest = case splitPrimePrefix rest
of Nothing -> []
Just (_, tl) -> split p tl
takeWhile p = fst . span p
dropWhile p = snd . span p
splitAt n0 m0 | n0 <= 0 = (mempty, m0)
| otherwise = split' n0 id m0
where split' 0 f m = (f mempty, m)
split' n f m = case splitPrimePrefix m
of Nothing -> (f mempty, m)
Just (prime, rest) -> split' (pred n) (f . mappend prime) rest
drop n p = snd (splitAt n p)
take n p = fst (splitAt n p)
{-# MINIMAL #-}
{-# DEPRECATED StableFactorialMonoid "Use Data.Semigroup.Factorial.StableFactorial instead." #-}
type StableFactorialMonoid m = (StableFactorial m, FactorialMonoid m, PositiveMonoid m)
instance FactorialMonoid () where
splitPrimePrefix () = Nothing
splitPrimeSuffix () = Nothing
instance FactorialMonoid a => FactorialMonoid (Dual a) where
splitPrimePrefix (Dual a) = case splitPrimeSuffix a
of Nothing -> Nothing
Just (p, s) -> Just (Dual s, Dual p)
splitPrimeSuffix (Dual a) = case splitPrimePrefix a
of Nothing -> Nothing
Just (p, s) -> Just (Dual s, Dual p)
inits (Dual a) = fmap Dual (reverse $ tails a)
tails (Dual a) = fmap Dual (reverse $ inits a)
instance (Integral a, Eq a) => FactorialMonoid (Sum a) where
splitPrimePrefix (Sum 0) = Nothing
splitPrimePrefix (Sum a) = Just (Sum (signum a), Sum (a - signum a))
splitPrimeSuffix (Sum 0) = Nothing
splitPrimeSuffix (Sum a) = Just (Sum (a - signum a), Sum (signum a))
instance Integral a => FactorialMonoid (Product a)
instance FactorialMonoid a => FactorialMonoid (Maybe a) where
splitPrimePrefix Nothing = Nothing
splitPrimePrefix (Just a) = case splitPrimePrefix a
of Nothing -> Just (Just a, Nothing)
Just (p, s) -> Just (Just p, if null s then Nothing else Just s)
instance (FactorialMonoid a, FactorialMonoid b) => FactorialMonoid (a, b) where
splitPrimePrefix (a, b) = case (splitPrimePrefix a, splitPrimePrefix b)
of (Just (ap, as), _) -> Just ((ap, mempty), (as, b))
(Nothing, Just (bp, bs)) -> Just ((a, bp), (a, bs))
(Nothing, Nothing) -> Nothing
splitPrimeSuffix (a, b) = case (splitPrimeSuffix a, splitPrimeSuffix b)
of (_, Just (bp, bs)) -> Just ((a, bp), (mempty, bs))
(Just (ap, as), Nothing) -> Just ((ap, b), (as, b))
(Nothing, Nothing) -> Nothing
inits (a, b) = List.map (flip (,) mempty) (inits a) ++ List.map ((,) a) (List.tail $ inits b)
tails (a, b) = List.map (flip (,) b) (tails a) ++ List.map ((,) mempty) (List.tail $ tails b)
span p (x, y) = ((xp, yp), (xs, ys))
where (xp, xs) = span (p . fromFst) x
(yp, ys) | null xs = span (p . fromSnd) y
| otherwise = (mempty, y)
spanMaybe s0 f (x, y) | null xs = ((xp, yp), (xs, ys), s2)
| otherwise = ((xp, mempty), (xs, y), s1)
where (xp, xs, s1) = spanMaybe s0 (\s-> f s . fromFst) x
(yp, ys, s2) = spanMaybe s1 (\s-> f s . fromSnd) y
spanMaybe' s0 f (x, y) | null xs = ((xp, yp), (xs, ys), s2)
| otherwise = ((xp, mempty), (xs, y), s1)
where (xp, xs, s1) = spanMaybe' s0 (\s-> f s . fromFst) x
(yp, ys, s2) = spanMaybe' s1 (\s-> f s . fromSnd) y
split p (x0, y0) = fst $ List.foldr combine (ys, False) xs
where xs = List.map fromFst $ split (p . fromFst) x0
ys = List.map fromSnd $ split (p . fromSnd) y0
combine x (~(y:rest), False) = (mappend x y : rest, True)
combine x (rest, True) = (x:rest, True)
splitAt n (x, y) = ((xp, yp), (xs, ys))
where (xp, xs) = splitAt n x
(yp, ys) | null xs = splitAt (n - length x) y
| otherwise = (mempty, y)
{-# INLINE fromFst #-}
fromFst :: Monoid b => a -> (a, b)
fromFst a = (a, mempty)
{-# INLINE fromSnd #-}
fromSnd :: Monoid a => b -> (a, b)
fromSnd b = (mempty, b)
instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c) => FactorialMonoid (a, b, c) where
splitPrimePrefix (a, b, c) = case (splitPrimePrefix a, splitPrimePrefix b, splitPrimePrefix c)
of (Just (ap, as), _, _) -> Just ((ap, mempty, mempty), (as, b, c))
(Nothing, Just (bp, bs), _) -> Just ((a, bp, mempty), (a, bs, c))
(Nothing, Nothing, Just (cp, cs)) -> Just ((a, b, cp), (a, b, cs))
(Nothing, Nothing, Nothing) -> Nothing
splitPrimeSuffix (a, b, c) = case (splitPrimeSuffix a, splitPrimeSuffix b, splitPrimeSuffix c)
of (_, _, Just (cp, cs)) -> Just ((a, b, cp), (mempty, mempty, cs))
(_, Just (bp, bs), Nothing) -> Just ((a, bp, c), (mempty, bs, c))
(Just (ap, as), Nothing, Nothing) -> Just ((ap, b, c), (as, b, c))
(Nothing, Nothing, Nothing) -> Nothing
inits (a, b, c) = List.map (\a1-> (a1, mempty, mempty)) (inits a)
++ List.map (\b1-> (a, b1, mempty)) (List.tail $ inits b)
++ List.map (\c1-> (a, b, c1)) (List.tail $ inits c)
tails (a, b, c) = List.map (\a1-> (a1, b, c)) (tails a)
++ List.map (\b1-> (mempty, b1, c)) (List.tail $ tails b)
++ List.map (\c1-> (mempty, mempty, c1)) (List.tail $ tails c)
span p (a, b, c) = ((ap, bp, cp), (as, bs, cs))
where (ap, as) = span (p . fromFstOf3) a
(bp, bs) | null as = span (p . fromSndOf3) b
| otherwise = (mempty, b)
(cp, cs) | null as && null bs = span (p . fromThdOf3) c
| otherwise = (mempty, c)
spanMaybe s0 f (a, b, c) | not (null as) = ((ap, mempty, mempty), (as, b, c), s1)
| not (null bs) = ((ap, bp, mempty), (as, bs, c), s2)
| otherwise = ((ap, bp, cp), (as, bs, cs), s3)
where (ap, as, s1) = spanMaybe s0 (\s-> f s . fromFstOf3) a
(bp, bs, s2) = spanMaybe s1 (\s-> f s . fromSndOf3) b
(cp, cs, s3) = spanMaybe s2 (\s-> f s . fromThdOf3) c
spanMaybe' s0 f (a, b, c) | not (null as) = ((ap, mempty, mempty), (as, b, c), s1)
| not (null bs) = ((ap, bp, mempty), (as, bs, c), s2)
| otherwise = ((ap, bp, cp), (as, bs, cs), s3)
where (ap, as, s1) = spanMaybe' s0 (\s-> f s . fromFstOf3) a
(bp, bs, s2) = spanMaybe' s1 (\s-> f s . fromSndOf3) b
(cp, cs, s3) = spanMaybe' s2 (\s-> f s . fromThdOf3) c
splitAt n (a, b, c) = ((ap, bp, cp), (as, bs, cs))
where (ap, as) = splitAt n a
(bp, bs) | null as = splitAt (n - length a) b
| otherwise = (mempty, b)
(cp, cs) | null as && null bs = splitAt (n - length a - length b) c
| otherwise = (mempty, c)
{-# INLINE fromFstOf3 #-}
fromFstOf3 :: (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3 a = (a, mempty, mempty)
{-# INLINE fromSndOf3 #-}
fromSndOf3 :: (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3 b = (mempty, b, mempty)
{-# INLINE fromThdOf3 #-}
fromThdOf3 :: (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3 c = (mempty, mempty, c)
instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c, FactorialMonoid d) =>
FactorialMonoid (a, b, c, d) where
splitPrimePrefix (a, b, c, d) = case (splitPrimePrefix a, splitPrimePrefix b, splitPrimePrefix c, splitPrimePrefix d)
of (Just (ap, as), _, _, _) -> Just ((ap, mempty, mempty, mempty), (as, b, c, d))
(Nothing, Just (bp, bs), _, _) -> Just ((a, bp, mempty, mempty), (a, bs, c, d))
(Nothing, Nothing, Just (cp, cs), _) -> Just ((a, b, cp, mempty), (a, b, cs, d))
(Nothing, Nothing, Nothing, Just (dp, ds)) -> Just ((a, b, c, dp), (a, b, c, ds))
(Nothing, Nothing, Nothing, Nothing) -> Nothing
splitPrimeSuffix (a, b, c, d) = case (splitPrimeSuffix a, splitPrimeSuffix b, splitPrimeSuffix c, splitPrimeSuffix d)
of (_, _, _, Just (dp, ds)) -> Just ((a, b, c, dp), (mempty, mempty, mempty, ds))
(_, _, Just (cp, cs), Nothing) -> Just ((a, b, cp, d), (mempty, mempty, cs, d))
(_, Just (bp, bs), Nothing, Nothing) -> Just ((a, bp, c, d), (mempty, bs, c, d))
(Just (ap, as), Nothing, Nothing, Nothing) -> Just ((ap, b, c, d), (as, b, c, d))
(Nothing, Nothing, Nothing, Nothing) -> Nothing
inits (a, b, c, d) = List.map (\a1-> (a1, mempty, mempty, mempty)) (inits a)
++ List.map (\b1-> (a, b1, mempty, mempty)) (List.tail $ inits b)
++ List.map (\c1-> (a, b, c1, mempty)) (List.tail $ inits c)
++ List.map (\d1-> (a, b, c, d1)) (List.tail $ inits d)
tails (a, b, c, d) = List.map (\a1-> (a1, b, c, d)) (tails a)
++ List.map (\b1-> (mempty, b1, c, d)) (List.tail $ tails b)
++ List.map (\c1-> (mempty, mempty, c1, d)) (List.tail $ tails c)
++ List.map (\d1-> (mempty, mempty, mempty, d1)) (List.tail $ tails d)
span p (a, b, c, d) = ((ap, bp, cp, dp), (as, bs, cs, ds))
where (ap, as) = span (p . fromFstOf4) a
(bp, bs) | null as = span (p . fromSndOf4) b
| otherwise = (mempty, b)
(cp, cs) | null as && null bs = span (p . fromThdOf4) c
| otherwise = (mempty, c)
(dp, ds) | null as && null bs && null cs = span (p . fromFthOf4) d
| otherwise = (mempty, d)
spanMaybe s0 f (a, b, c, d) | not (null as) = ((ap, mempty, mempty, mempty), (as, b, c, d), s1)
| not (null bs) = ((ap, bp, mempty, mempty), (as, bs, c, d), s2)
| not (null cs) = ((ap, bp, cp, mempty), (as, bs, cs, d), s3)
| otherwise = ((ap, bp, cp, dp), (as, bs, cs, ds), s4)
where (ap, as, s1) = spanMaybe s0 (\s-> f s . fromFstOf4) a
(bp, bs, s2) = spanMaybe s1 (\s-> f s . fromSndOf4) b
(cp, cs, s3) = spanMaybe s2 (\s-> f s . fromThdOf4) c
(dp, ds, s4) = spanMaybe s3 (\s-> f s . fromFthOf4) d
spanMaybe' s0 f (a, b, c, d) | not (null as) = ((ap, mempty, mempty, mempty), (as, b, c, d), s1)
| not (null bs) = ((ap, bp, mempty, mempty), (as, bs, c, d), s2)
| not (null cs) = ((ap, bp, cp, mempty), (as, bs, cs, d), s3)
| otherwise = ((ap, bp, cp, dp), (as, bs, cs, ds), s4)
where (ap, as, s1) = spanMaybe' s0 (\s-> f s . fromFstOf4) a
(bp, bs, s2) = spanMaybe' s1 (\s-> f s . fromSndOf4) b
(cp, cs, s3) = spanMaybe' s2 (\s-> f s . fromThdOf4) c
(dp, ds, s4) = spanMaybe' s3 (\s-> f s . fromFthOf4) d
splitAt n (a, b, c, d) = ((ap, bp, cp, dp), (as, bs, cs, ds))
where (ap, as) = splitAt n a
(bp, bs) | null as = splitAt (n - length a) b
| otherwise = (mempty, b)
(cp, cs) | null as && null bs = splitAt (n - length a - length b) c
| otherwise = (mempty, c)
(dp, ds) | null as && null bs && null cs = splitAt (n - length a - length b - length c) d
| otherwise = (mempty, d)
{-# INLINE fromFstOf4 #-}
fromFstOf4 :: (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4 a = (a, mempty, mempty, mempty)
{-# INLINE fromSndOf4 #-}
fromSndOf4 :: (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4 b = (mempty, b, mempty, mempty)
{-# INLINE fromThdOf4 #-}
fromThdOf4 :: (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4 c = (mempty, mempty, c, mempty)
{-# INLINE fromFthOf4 #-}
fromFthOf4 :: (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4 d = (mempty, mempty, mempty, d)
instance FactorialMonoid [x] where
splitPrimePrefix [] = Nothing
splitPrimePrefix (x:xs) = Just ([x], xs)
splitPrimeSuffix [] = Nothing
splitPrimeSuffix xs = Just (splitLast id xs)
where splitLast f last@[_] = (f [], last)
splitLast f ~(x:rest) = splitLast (f . (x:)) rest
inits = List.inits
tails = List.tails
break f = List.break (f . (:[]))
span f = List.span (f . (:[]))
dropWhile f = List.dropWhile (f . (:[]))
takeWhile f = List.takeWhile (f . (:[]))
spanMaybe s0 f l = (prefix' [], suffix' [], s')
where (prefix', suffix', s', _) = List.foldl' g (id, id, s0, True) l
g (prefix, suffix, s1, live) x | live, Just s2 <- f s1 [x] = (prefix . (x:), id, s2, True)
| otherwise = (prefix, suffix . (x:), s1, False)
spanMaybe' s0 f l = (prefix' [], suffix' [], s')
where (prefix', suffix', s', _) = List.foldl' g (id, id, s0, True) l
g (prefix, suffix, s1, live) x | live, Just s2 <- f s1 [x] = seq s2 $ (prefix . (x:), id, s2, True)
| otherwise = (prefix, suffix . (x:), s1, False)
splitAt = List.splitAt
drop = List.drop
take = List.take
instance FactorialMonoid ByteString.ByteString where
splitPrimePrefix x = if ByteString.null x then Nothing else Just (ByteString.splitAt 1 x)
splitPrimeSuffix x = if ByteString.null x then Nothing else Just (ByteString.splitAt (ByteString.length x - 1) x)
inits = ByteString.inits
tails = ByteString.tails
break f = ByteString.break (f . ByteString.singleton)
span f = ByteString.span (f . ByteString.singleton)
spanMaybe s0 f b = case ByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- ByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s) | Just s' <- f s (ByteString.singleton w) = let i' = succ i :: Int in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f b = case ByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- ByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s) | Just s' <- f s (ByteString.singleton w) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
dropWhile f = ByteString.dropWhile (f . ByteString.singleton)
takeWhile f = ByteString.takeWhile (f . ByteString.singleton)
split f = ByteString.splitWith f'
where f' = f . ByteString.singleton
splitAt = ByteString.splitAt
drop = ByteString.drop
take = ByteString.take
instance FactorialMonoid LazyByteString.ByteString where
splitPrimePrefix x = if LazyByteString.null x then Nothing
else Just (LazyByteString.splitAt 1 x)
splitPrimeSuffix x = if LazyByteString.null x then Nothing
else Just (LazyByteString.splitAt (LazyByteString.length x - 1) x)
inits = LazyByteString.inits
tails = LazyByteString.tails
break f = LazyByteString.break (f . LazyByteString.singleton)
span f = LazyByteString.span (f . LazyByteString.singleton)
spanMaybe s0 f b = case LazyByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- LazyByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s) | Just s' <- f s (LazyByteString.singleton w) = let i' = succ i :: Int64 in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f b = case LazyByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- LazyByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s)
| Just s' <- f s (LazyByteString.singleton w) = let i' = succ i :: Int64 in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
dropWhile f = LazyByteString.dropWhile (f . LazyByteString.singleton)
takeWhile f = LazyByteString.takeWhile (f . LazyByteString.singleton)
split f = LazyByteString.splitWith f'
where f' = f . LazyByteString.singleton
splitAt = LazyByteString.splitAt . fromIntegral
drop n = LazyByteString.drop (fromIntegral n)
take n = LazyByteString.take (fromIntegral n)
instance FactorialMonoid Text.Text where
splitPrimePrefix = fmap (first Text.singleton) . Text.uncons
splitPrimeSuffix x = if Text.null x then Nothing else Just (Text.init x, Text.singleton (Text.last x))
inits = Text.inits
tails = Text.tails
span f = Text.span (f . Text.singleton)
break f = Text.break (f . Text.singleton)
dropWhile f = Text.dropWhile (f . Text.singleton)
takeWhile f = Text.takeWhile (f . Text.singleton)
spanMaybe s0 f t = case Text.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- Text.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (Text.singleton c) = let i' = succ i :: Int in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f t = case Text.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- Text.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (Text.singleton c) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
split f = Text.split f'
where f' = f . Text.singleton
splitAt = Text.splitAt
drop = Text.drop
take = Text.take
instance FactorialMonoid LazyText.Text where
splitPrimePrefix = fmap (first LazyText.singleton) . LazyText.uncons
splitPrimeSuffix x = if LazyText.null x
then Nothing
else Just (LazyText.init x, LazyText.singleton (LazyText.last x))
inits = LazyText.inits
tails = LazyText.tails
span f = LazyText.span (f . LazyText.singleton)
break f = LazyText.break (f . LazyText.singleton)
dropWhile f = LazyText.dropWhile (f . LazyText.singleton)
takeWhile f = LazyText.takeWhile (f . LazyText.singleton)
spanMaybe s0 f t = case LazyText.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- LazyText.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (LazyText.singleton c) = let i' = succ i :: Int64 in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f t = case LazyText.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- LazyText.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (LazyText.singleton c) = let i' = succ i :: Int64 in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
split f = LazyText.split f'
where f' = f . LazyText.singleton
splitAt = LazyText.splitAt . fromIntegral
drop n = LazyText.drop (fromIntegral n)
take n = LazyText.take (fromIntegral n)
instance Ord k => FactorialMonoid (Map.Map k v) where
splitPrimePrefix = fmap singularize . Map.minViewWithKey
where singularize ((k, v), rest) = (Map.singleton k v, rest)
splitPrimeSuffix = fmap singularize . Map.maxViewWithKey
where singularize ((k, v), rest) = (rest, Map.singleton k v)
instance FactorialMonoid (IntMap.IntMap a) where
splitPrimePrefix = fmap singularize . IntMap.minViewWithKey
where singularize ((k, v), rest) = (IntMap.singleton k v, rest)
splitPrimeSuffix = fmap singularize . IntMap.maxViewWithKey
where singularize ((k, v), rest) = (rest, IntMap.singleton k v)
instance FactorialMonoid IntSet.IntSet where
splitPrimePrefix = fmap singularize . IntSet.minView
where singularize (min, rest) = (IntSet.singleton min, rest)
splitPrimeSuffix = fmap singularize . IntSet.maxView
where singularize (max, rest) = (rest, IntSet.singleton max)
instance FactorialMonoid (Sequence.Seq a) where
splitPrimePrefix q = case Sequence.viewl q
of Sequence.EmptyL -> Nothing
hd Sequence.:< rest -> Just (Sequence.singleton hd, rest)
splitPrimeSuffix q = case Sequence.viewr q
of Sequence.EmptyR -> Nothing
rest Sequence.:> last -> Just (rest, Sequence.singleton last)
inits = Foldable.toList . Sequence.inits
tails = Foldable.toList . Sequence.tails
span f = Sequence.spanl (f . Sequence.singleton)
break f = Sequence.breakl (f . Sequence.singleton)
dropWhile f = Sequence.dropWhileL (f . Sequence.singleton)
takeWhile f = Sequence.takeWhileL (f . Sequence.singleton)
spanMaybe s0 f b = case Foldable.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- Sequence.splitAt i b -> (prefix, suffix, s')
where g x cont (i, s) | Just s' <- f s (Sequence.singleton x) = let i' = succ i :: Int in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f b = case Foldable.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- Sequence.splitAt i b -> (prefix, suffix, s')
where g x cont (i, s) | Just s' <- f s (Sequence.singleton x) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
splitAt = Sequence.splitAt
drop = Sequence.drop
take = Sequence.take
instance Ord a => FactorialMonoid (Set.Set a) where
splitPrimePrefix = fmap singularize . Set.minView
where singularize (min, rest) = (Set.singleton min, rest)
splitPrimeSuffix = fmap singularize . Set.maxView
where singularize (max, rest) = (rest, Set.singleton max)
instance FactorialMonoid (Vector.Vector a) where
splitPrimePrefix x = if Vector.null x then Nothing else Just (Vector.splitAt 1 x)
splitPrimeSuffix x = if Vector.null x then Nothing else Just (Vector.splitAt (Vector.length x - 1) x)
inits x0 = initsWith x0 []
where initsWith x rest | Vector.null x = x:rest
| otherwise = initsWith (Vector.unsafeInit x) (x:rest)
tails x = x : if Vector.null x then [] else tails (Vector.unsafeTail x)
break f = Vector.break (f . Vector.singleton)
span f = Vector.span (f . Vector.singleton)
dropWhile f = Vector.dropWhile (f . Vector.singleton)
takeWhile f = Vector.takeWhile (f . Vector.singleton)
spanMaybe s0 f v = case Vector.ifoldr g Left v s0
of Left s' -> (v, Vector.empty, s')
Right (i, s') | (prefix, suffix) <- Vector.splitAt i v -> (prefix, suffix, s')
where g i x cont s | Just s' <- f s (Vector.singleton x) = cont s'
| otherwise = Right (i, s)
spanMaybe' s0 f v = case Vector.ifoldr' g Left v s0
of Left s' -> (v, Vector.empty, s')
Right (i, s') | (prefix, suffix) <- Vector.splitAt i v -> (prefix, suffix, s')
where g i x cont s | Just s' <- f s (Vector.singleton x) = seq s' (cont s')
| otherwise = Right (i, s)
splitAt = Vector.splitAt
drop = Vector.drop
take = Vector.take