{-# LANGUAGE Haskell2010, ConstraintKinds, FlexibleInstances, Trustworthy #-}
module Data.Monoid.Factorial (
module Data.Semigroup.Factorial,
FactorialMonoid(..), StableFactorialMonoid,
)
where
import Control.Arrow (first)
import Data.Monoid
import qualified Data.Foldable as Foldable
import qualified Data.List as List
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Lazy as LazyByteString
import qualified Data.Text as Text
import qualified Data.Text.Lazy as LazyText
import qualified Data.IntMap as IntMap
import qualified Data.IntSet as IntSet
import qualified Data.Map as Map
import qualified Data.Sequence as Sequence
import qualified Data.Set as Set
import qualified Data.Vector as Vector
import Data.Int (Int64)
import Data.Semigroup.Factorial
import Data.Monoid.Null (MonoidNull(null), PositiveMonoid)
import Prelude hiding (break, drop, dropWhile, foldl, foldr, last, length, map, max, min,
null, reverse, span, splitAt, take, takeWhile)
class (Factorial m, MonoidNull m) => FactorialMonoid m where
splitPrimePrefix :: m -> Maybe (m, m)
splitPrimeSuffix :: m -> Maybe (m, m)
inits :: m -> [m]
tails :: m -> [m]
span :: (m -> Bool) -> m -> (m, m)
break :: (m -> Bool) -> m -> (m, m)
split :: (m -> Bool) -> m -> [m]
takeWhile :: (m -> Bool) -> m -> m
dropWhile :: (m -> Bool) -> m -> m
spanMaybe :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
splitAt :: Int -> m -> (m, m)
drop :: Int -> m -> m
take :: Int -> m -> m
splitPrimePrefix m
x = case m -> [m]
forall m. Factorial m => m -> [m]
factors m
x
of [] -> Maybe (m, m)
forall a. Maybe a
Nothing
m
prefix : [m]
rest -> (m, m) -> Maybe (m, m)
forall a. a -> Maybe a
Just (m
prefix, [m] -> m
forall a. Monoid a => [a] -> a
mconcat [m]
rest)
splitPrimeSuffix m
x = case m -> [m]
forall m. Factorial m => m -> [m]
factors m
x
of [] -> Maybe (m, m)
forall a. Maybe a
Nothing
[m]
fs -> (m, m) -> Maybe (m, m)
forall a. a -> Maybe a
Just ([m] -> m
forall a. Monoid a => [a] -> a
mconcat ([m] -> [m]
forall a. HasCallStack => [a] -> [a]
List.init [m]
fs), [m] -> m
forall a. HasCallStack => [a] -> a
List.last [m]
fs)
inits = (m -> [m] -> [m]) -> [m] -> m -> [m]
forall m a. Factorial m => (m -> a -> a) -> a -> m -> a
forall a. (m -> a -> a) -> a -> m -> a
foldr (\m
m [m]
l-> m
forall a. Monoid a => a
mempty m -> [m] -> [m]
forall a. a -> [a] -> [a]
: (m -> m) -> [m] -> [m]
forall a b. (a -> b) -> [a] -> [b]
List.map (m -> m -> m
forall a. Monoid a => a -> a -> a
mappend m
m) [m]
l) [m
forall a. Monoid a => a
mempty]
tails m
m = m
m m -> [m] -> [m]
forall a. a -> [a] -> [a]
: [m] -> ((m, m) -> [m]) -> Maybe (m, m) -> [m]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] (m -> [m]
forall m. FactorialMonoid m => m -> [m]
tails (m -> [m]) -> ((m, m) -> m) -> (m, m) -> [m]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (m, m) -> m
forall a b. (a, b) -> b
snd) (m -> Maybe (m, m)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m)
span m -> Bool
p m
m0 = (m -> m) -> m -> (m, m)
forall {a}. (m -> a) -> m -> (a, m)
spanAfter m -> m
forall a. a -> a
id m
m0
where spanAfter :: (m -> a) -> m -> (a, m)
spanAfter m -> a
f m
m = case m -> Maybe (m, m)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m
of Just (m
prime, m
rest) | m -> Bool
p m
prime -> (m -> a) -> m -> (a, m)
spanAfter (m -> a
f (m -> a) -> (m -> m) -> m -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m -> m -> m
forall a. Monoid a => a -> a -> a
mappend m
prime) m
rest
Maybe (m, m)
_ -> (m -> a
f m
forall a. Monoid a => a
mempty, m
m)
break = (m -> Bool) -> m -> (m, m)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((m -> Bool) -> m -> (m, m))
-> ((m -> Bool) -> m -> Bool) -> (m -> Bool) -> m -> (m, m)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Bool -> Bool
not (Bool -> Bool) -> (m -> Bool) -> m -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
.)
spanMaybe s
s0 s -> m -> Maybe s
f m
m0 = (m -> m) -> s -> m -> (m, m, s)
spanAfter m -> m
forall a. a -> a
id s
s0 m
m0
where spanAfter :: (m -> m) -> s -> m -> (m, m, s)
spanAfter m -> m
g s
s m
m = case m -> Maybe (m, m)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m
of Just (m
prime, m
rest) | Just s
s' <- s -> m -> Maybe s
f s
s m
prime -> (m -> m) -> s -> m -> (m, m, s)
spanAfter (m -> m
g (m -> m) -> (m -> m) -> m -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m -> m -> m
forall a. Monoid a => a -> a -> a
mappend m
prime) s
s' m
rest
| Bool
otherwise -> (m -> m
g m
forall a. Monoid a => a
mempty, m
m, s
s)
Maybe (m, m)
Nothing -> (m
m0, m
m, s
s)
spanMaybe' s
s0 s -> m -> Maybe s
f m
m0 = (m -> m) -> s -> m -> (m, m, s)
spanAfter m -> m
forall a. a -> a
id s
s0 m
m0
where spanAfter :: (m -> m) -> s -> m -> (m, m, s)
spanAfter m -> m
g s
s m
m = s -> (m, m, s) -> (m, m, s)
forall a b. a -> b -> b
seq s
s ((m, m, s) -> (m, m, s)) -> (m, m, s) -> (m, m, s)
forall a b. (a -> b) -> a -> b
$
case m -> Maybe (m, m)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m
of Just (m
prime, m
rest) | Just s
s' <- s -> m -> Maybe s
f s
s m
prime -> (m -> m) -> s -> m -> (m, m, s)
spanAfter (m -> m
g (m -> m) -> (m -> m) -> m -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m -> m -> m
forall a. Monoid a => a -> a -> a
mappend m
prime) s
s' m
rest
| Bool
otherwise -> (m -> m
g m
forall a. Monoid a => a
mempty, m
m, s
s)
Maybe (m, m)
Nothing -> (m
m0, m
m, s
s)
split m -> Bool
p m
m = m
prefix m -> [m] -> [m]
forall a. a -> [a] -> [a]
: [m]
splitRest
where (m
prefix, m
rest) = (m -> Bool) -> m -> (m, m)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
break m -> Bool
p m
m
splitRest :: [m]
splitRest = case m -> Maybe (m, m)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
rest
of Maybe (m, m)
Nothing -> []
Just (m
_, m
tl) -> (m -> Bool) -> m -> [m]
forall m. FactorialMonoid m => (m -> Bool) -> m -> [m]
split m -> Bool
p m
tl
takeWhile m -> Bool
p = (m, m) -> m
forall a b. (a, b) -> a
fst ((m, m) -> m) -> (m -> (m, m)) -> m -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (m -> Bool) -> m -> (m, m)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span m -> Bool
p
dropWhile m -> Bool
p = (m, m) -> m
forall a b. (a, b) -> b
snd ((m, m) -> m) -> (m -> (m, m)) -> m -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (m -> Bool) -> m -> (m, m)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span m -> Bool
p
splitAt Int
n0 m
m0 | Int
n0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0 = (m
forall a. Monoid a => a
mempty, m
m0)
| Bool
otherwise = Int -> (m -> m) -> m -> (m, m)
forall {t} {t} {c}.
(Eq t, Num t, FactorialMonoid t, Enum t) =>
t -> (t -> c) -> t -> (c, t)
split' Int
n0 m -> m
forall a. a -> a
id m
m0
where split' :: t -> (t -> c) -> t -> (c, t)
split' t
0 t -> c
f t
m = (t -> c
f t
forall a. Monoid a => a
mempty, t
m)
split' t
n t -> c
f t
m = case t -> Maybe (t, t)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix t
m
of Maybe (t, t)
Nothing -> (t -> c
f t
forall a. Monoid a => a
mempty, t
m)
Just (t
prime, t
rest) -> t -> (t -> c) -> t -> (c, t)
split' (t -> t
forall a. Enum a => a -> a
pred t
n) (t -> c
f (t -> c) -> (t -> t) -> t -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. t -> t -> t
forall a. Monoid a => a -> a -> a
mappend t
prime) t
rest
drop Int
n m
p = (m, m) -> m
forall a b. (a, b) -> b
snd (Int -> m -> (m, m)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n m
p)
take Int
n m
p = (m, m) -> m
forall a b. (a, b) -> a
fst (Int -> m -> (m, m)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n m
p)
{-# MINIMAL #-}
{-# INLINABLE splitPrimePrefix #-}
{-# INLINABLE splitPrimeSuffix #-}
{-# INLINABLE inits #-}
{-# INLINABLE tails #-}
{-# INLINABLE span #-}
{-# INLINE break #-}
{-# INLINABLE spanMaybe #-}
{-# INLINABLE spanMaybe' #-}
{-# INLINABLE split #-}
{-# INLINE takeWhile #-}
{-# INLINE dropWhile #-}
{-# INLINABLE splitAt #-}
{-# DEPRECATED StableFactorialMonoid "Use Data.Semigroup.Factorial.StableFactorial instead." #-}
type StableFactorialMonoid m = (StableFactorial m, FactorialMonoid m, PositiveMonoid m)
instance FactorialMonoid () where
splitPrimePrefix :: () -> Maybe ((), ())
splitPrimePrefix () = Maybe ((), ())
forall a. Maybe a
Nothing
splitPrimeSuffix :: () -> Maybe ((), ())
splitPrimeSuffix () = Maybe ((), ())
forall a. Maybe a
Nothing
instance FactorialMonoid a => FactorialMonoid (Dual a) where
splitPrimePrefix :: Dual a -> Maybe (Dual a, Dual a)
splitPrimePrefix (Dual a
a) = case a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a
of Maybe (a, a)
Nothing -> Maybe (Dual a, Dual a)
forall a. Maybe a
Nothing
Just (a
p, a
s) -> (Dual a, Dual a) -> Maybe (Dual a, Dual a)
forall a. a -> Maybe a
Just (a -> Dual a
forall a. a -> Dual a
Dual a
s, a -> Dual a
forall a. a -> Dual a
Dual a
p)
splitPrimeSuffix :: Dual a -> Maybe (Dual a, Dual a)
splitPrimeSuffix (Dual a
a) = case a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a
of Maybe (a, a)
Nothing -> Maybe (Dual a, Dual a)
forall a. Maybe a
Nothing
Just (a
p, a
s) -> (Dual a, Dual a) -> Maybe (Dual a, Dual a)
forall a. a -> Maybe a
Just (a -> Dual a
forall a. a -> Dual a
Dual a
s, a -> Dual a
forall a. a -> Dual a
Dual a
p)
inits :: Dual a -> [Dual a]
inits (Dual a
a) = (a -> Dual a) -> [a] -> [Dual a]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Dual a
forall a. a -> Dual a
Dual ([a] -> [a]
forall m. Factorial m => m -> m
reverse ([a] -> [a]) -> [a] -> [a]
forall a b. (a -> b) -> a -> b
$ a -> [a]
forall m. FactorialMonoid m => m -> [m]
tails a
a)
tails :: Dual a -> [Dual a]
tails (Dual a
a) = (a -> Dual a) -> [a] -> [Dual a]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Dual a
forall a. a -> Dual a
Dual ([a] -> [a]
forall m. Factorial m => m -> m
reverse ([a] -> [a]) -> [a] -> [a]
forall a b. (a -> b) -> a -> b
$ a -> [a]
forall m. FactorialMonoid m => m -> [m]
inits a
a)
instance (Integral a, Eq a) => FactorialMonoid (Sum a) where
splitPrimePrefix :: Sum a -> Maybe (Sum a, Sum a)
splitPrimePrefix (Sum a
0) = Maybe (Sum a, Sum a)
forall a. Maybe a
Nothing
splitPrimePrefix (Sum a
a) = (Sum a, Sum a) -> Maybe (Sum a, Sum a)
forall a. a -> Maybe a
Just (a -> Sum a
forall a. a -> Sum a
Sum (a -> a
forall a. Num a => a -> a
signum a
a), a -> Sum a
forall a. a -> Sum a
Sum (a
a a -> a -> a
forall a. Num a => a -> a -> a
- a -> a
forall a. Num a => a -> a
signum a
a))
splitPrimeSuffix :: Sum a -> Maybe (Sum a, Sum a)
splitPrimeSuffix (Sum a
0) = Maybe (Sum a, Sum a)
forall a. Maybe a
Nothing
splitPrimeSuffix (Sum a
a) = (Sum a, Sum a) -> Maybe (Sum a, Sum a)
forall a. a -> Maybe a
Just (a -> Sum a
forall a. a -> Sum a
Sum (a
a a -> a -> a
forall a. Num a => a -> a -> a
- a -> a
forall a. Num a => a -> a
signum a
a), a -> Sum a
forall a. a -> Sum a
Sum (a -> a
forall a. Num a => a -> a
signum a
a))
instance Integral a => FactorialMonoid (Product a)
instance FactorialMonoid a => FactorialMonoid (Maybe a) where
splitPrimePrefix :: Maybe a -> Maybe (Maybe a, Maybe a)
splitPrimePrefix Maybe a
Nothing = Maybe (Maybe a, Maybe a)
forall a. Maybe a
Nothing
splitPrimePrefix (Just a
a) = case a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a
of Maybe (a, a)
Nothing -> (Maybe a, Maybe a) -> Maybe (Maybe a, Maybe a)
forall a. a -> Maybe a
Just (a -> Maybe a
forall a. a -> Maybe a
Just a
a, Maybe a
forall a. Maybe a
Nothing)
Just (a
p, a
s) -> (Maybe a, Maybe a) -> Maybe (Maybe a, Maybe a)
forall a. a -> Maybe a
Just (a -> Maybe a
forall a. a -> Maybe a
Just a
p, if a -> Bool
forall m. MonoidNull m => m -> Bool
null a
s then Maybe a
forall a. Maybe a
Nothing else a -> Maybe a
forall a. a -> Maybe a
Just a
s)
instance (FactorialMonoid a, FactorialMonoid b) => FactorialMonoid (a, b) where
splitPrimePrefix :: (a, b) -> Maybe ((a, b), (a, b))
splitPrimePrefix (a
a, b
b) = case (a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a, b -> Maybe (b, b)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix b
b)
of (Just (a
ap, a
as), Maybe (b, b)
_) -> ((a, b), (a, b)) -> Maybe ((a, b), (a, b))
forall a. a -> Maybe a
Just ((a
ap, b
forall a. Monoid a => a
mempty), (a
as, b
b))
(Maybe (a, a)
Nothing, Just (b
bp, b
bs)) -> ((a, b), (a, b)) -> Maybe ((a, b), (a, b))
forall a. a -> Maybe a
Just ((a
a, b
bp), (a
a, b
bs))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing) -> Maybe ((a, b), (a, b))
forall a. Maybe a
Nothing
splitPrimeSuffix :: (a, b) -> Maybe ((a, b), (a, b))
splitPrimeSuffix (a
a, b
b) = case (a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a, b -> Maybe (b, b)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix b
b)
of (Maybe (a, a)
_, Just (b
bp, b
bs)) -> ((a, b), (a, b)) -> Maybe ((a, b), (a, b))
forall a. a -> Maybe a
Just ((a
a, b
bp), (a
forall a. Monoid a => a
mempty, b
bs))
(Just (a
ap, a
as), Maybe (b, b)
Nothing) -> ((a, b), (a, b)) -> Maybe ((a, b), (a, b))
forall a. a -> Maybe a
Just ((a
ap, b
b), (a
as, b
b))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing) -> Maybe ((a, b), (a, b))
forall a. Maybe a
Nothing
inits :: (a, b) -> [(a, b)]
inits (a
a, b
b) = (a -> (a, b)) -> [a] -> [(a, b)]
forall a b. (a -> b) -> [a] -> [b]
List.map ((a -> b -> (a, b)) -> b -> a -> (a, b)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (,) b
forall a. Monoid a => a
mempty) (a -> [a]
forall m. FactorialMonoid m => m -> [m]
inits a
a) [(a, b)] -> [(a, b)] -> [(a, b)]
forall a. [a] -> [a] -> [a]
++ (b -> (a, b)) -> [b] -> [(a, b)]
forall a b. (a -> b) -> [a] -> [b]
List.map ((,) a
a) ([b] -> [b]
forall a. HasCallStack => [a] -> [a]
List.tail ([b] -> [b]) -> [b] -> [b]
forall a b. (a -> b) -> a -> b
$ b -> [b]
forall m. FactorialMonoid m => m -> [m]
inits b
b)
tails :: (a, b) -> [(a, b)]
tails (a
a, b
b) = (a -> (a, b)) -> [a] -> [(a, b)]
forall a b. (a -> b) -> [a] -> [b]
List.map ((a -> b -> (a, b)) -> b -> a -> (a, b)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (,) b
b) (a -> [a]
forall m. FactorialMonoid m => m -> [m]
tails a
a) [(a, b)] -> [(a, b)] -> [(a, b)]
forall a. [a] -> [a] -> [a]
++ (b -> (a, b)) -> [b] -> [(a, b)]
forall a b. (a -> b) -> [a] -> [b]
List.map ((,) a
forall a. Monoid a => a
mempty) ([b] -> [b]
forall a. HasCallStack => [a] -> [a]
List.tail ([b] -> [b]) -> [b] -> [b]
forall a b. (a -> b) -> a -> b
$ b -> [b]
forall m. FactorialMonoid m => m -> [m]
tails b
b)
span :: ((a, b) -> Bool) -> (a, b) -> ((a, b), (a, b))
span (a, b) -> Bool
p (a
x, b
y) = ((a
xp, b
yp), (a
xs, b
ys))
where (a
xp, a
xs) = (a -> Bool) -> a -> (a, a)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b) -> Bool
p ((a, b) -> Bool) -> (a -> (a, b)) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b)
forall b a. Monoid b => a -> (a, b)
fromFst) a
x
(b
yp, b
ys) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
xs = (b -> Bool) -> b -> (b, b)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b) -> Bool
p ((a, b) -> Bool) -> (b -> (a, b)) -> b -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b)
forall a b. Monoid a => b -> (a, b)
fromSnd) b
y
| Bool
otherwise = (b
forall a. Monoid a => a
mempty, b
y)
spanMaybe :: forall s.
s -> (s -> (a, b) -> Maybe s) -> (a, b) -> ((a, b), (a, b), s)
spanMaybe s
s0 s -> (a, b) -> Maybe s
f (a
x, b
y) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
xs = ((a
xp, b
yp), (a
xs, b
ys), s
s2)
| Bool
otherwise = ((a
xp, b
forall a. Monoid a => a
mempty), (a
xs, b
y), s
s1)
where (a
xp, a
xs, s
s1) = s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall s. s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s0 (\s
s-> s -> (a, b) -> Maybe s
f s
s ((a, b) -> Maybe s) -> (a -> (a, b)) -> a -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b)
forall b a. Monoid b => a -> (a, b)
fromFst) a
x
(b
yp, b
ys, s
s2) = s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall s. s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s1 (\s
s-> s -> (a, b) -> Maybe s
f s
s ((a, b) -> Maybe s) -> (b -> (a, b)) -> b -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b)
forall a b. Monoid a => b -> (a, b)
fromSnd) b
y
spanMaybe' :: forall s.
s -> (s -> (a, b) -> Maybe s) -> (a, b) -> ((a, b), (a, b), s)
spanMaybe' s
s0 s -> (a, b) -> Maybe s
f (a
x, b
y) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
xs = ((a
xp, b
yp), (a
xs, b
ys), s
s2)
| Bool
otherwise = ((a
xp, b
forall a. Monoid a => a
mempty), (a
xs, b
y), s
s1)
where (a
xp, a
xs, s
s1) = s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall s. s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s0 (\s
s-> s -> (a, b) -> Maybe s
f s
s ((a, b) -> Maybe s) -> (a -> (a, b)) -> a -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b)
forall b a. Monoid b => a -> (a, b)
fromFst) a
x
(b
yp, b
ys, s
s2) = s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall s. s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s1 (\s
s-> s -> (a, b) -> Maybe s
f s
s ((a, b) -> Maybe s) -> (b -> (a, b)) -> b -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b)
forall a b. Monoid a => b -> (a, b)
fromSnd) b
y
split :: ((a, b) -> Bool) -> (a, b) -> [(a, b)]
split (a, b) -> Bool
p (a
x0, b
y0) = ([(a, b)], Bool) -> [(a, b)]
forall a b. (a, b) -> a
fst (([(a, b)], Bool) -> [(a, b)]) -> ([(a, b)], Bool) -> [(a, b)]
forall a b. (a -> b) -> a -> b
$ ((a, b) -> ([(a, b)], Bool) -> ([(a, b)], Bool))
-> ([(a, b)], Bool) -> [(a, b)] -> ([(a, b)], Bool)
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
List.foldr (a, b) -> ([(a, b)], Bool) -> ([(a, b)], Bool)
forall {a}. Monoid a => a -> ([a], Bool) -> ([a], Bool)
combine ([(a, b)]
ys, Bool
False) [(a, b)]
xs
where xs :: [(a, b)]
xs = (a -> (a, b)) -> [a] -> [(a, b)]
forall a b. (a -> b) -> [a] -> [b]
List.map a -> (a, b)
forall b a. Monoid b => a -> (a, b)
fromFst ([a] -> [(a, b)]) -> [a] -> [(a, b)]
forall a b. (a -> b) -> a -> b
$ (a -> Bool) -> a -> [a]
forall m. FactorialMonoid m => (m -> Bool) -> m -> [m]
split ((a, b) -> Bool
p ((a, b) -> Bool) -> (a -> (a, b)) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b)
forall b a. Monoid b => a -> (a, b)
fromFst) a
x0
ys :: [(a, b)]
ys = (b -> (a, b)) -> [b] -> [(a, b)]
forall a b. (a -> b) -> [a] -> [b]
List.map b -> (a, b)
forall a b. Monoid a => b -> (a, b)
fromSnd ([b] -> [(a, b)]) -> [b] -> [(a, b)]
forall a b. (a -> b) -> a -> b
$ (b -> Bool) -> b -> [b]
forall m. FactorialMonoid m => (m -> Bool) -> m -> [m]
split ((a, b) -> Bool
p ((a, b) -> Bool) -> (b -> (a, b)) -> b -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b)
forall a b. Monoid a => b -> (a, b)
fromSnd) b
y0
combine :: a -> ([a], Bool) -> ([a], Bool)
combine a
x (~(a
y:[a]
rest), Bool
False) = (a -> a -> a
forall a. Monoid a => a -> a -> a
mappend a
x a
y a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
rest, Bool
True)
combine a
x ([a]
rest, Bool
True) = (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
rest, Bool
True)
splitAt :: Int -> (a, b) -> ((a, b), (a, b))
splitAt Int
n (a
x, b
y) = ((a
xp, b
yp), (a
xs, b
ys))
where (a
xp, a
xs) = Int -> a -> (a, a)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n a
x
(b
yp, b
ys) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
xs = Int -> b -> (b, b)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- a -> Int
forall m. Factorial m => m -> Int
length a
x) b
y
| Bool
otherwise = (b
forall a. Monoid a => a
mempty, b
y)
{-# INLINE fromFst #-}
fromFst :: Monoid b => a -> (a, b)
fromFst :: forall b a. Monoid b => a -> (a, b)
fromFst a
a = (a
a, b
forall a. Monoid a => a
mempty)
{-# INLINE fromSnd #-}
fromSnd :: Monoid a => b -> (a, b)
fromSnd :: forall a b. Monoid a => b -> (a, b)
fromSnd b
b = (a
forall a. Monoid a => a
mempty, b
b)
instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c) => FactorialMonoid (a, b, c) where
splitPrimePrefix :: (a, b, c) -> Maybe ((a, b, c), (a, b, c))
splitPrimePrefix (a
a, b
b, c
c) = case (a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a, b -> Maybe (b, b)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix b
b, c -> Maybe (c, c)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix c
c)
of (Just (a
ap, a
as), Maybe (b, b)
_, Maybe (c, c)
_) -> ((a, b, c), (a, b, c)) -> Maybe ((a, b, c), (a, b, c))
forall a. a -> Maybe a
Just ((a
ap, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty), (a
as, b
b, c
c))
(Maybe (a, a)
Nothing, Just (b
bp, b
bs), Maybe (c, c)
_) -> ((a, b, c), (a, b, c)) -> Maybe ((a, b, c), (a, b, c))
forall a. a -> Maybe a
Just ((a
a, b
bp, c
forall a. Monoid a => a
mempty), (a
a, b
bs, c
c))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Just (c
cp, c
cs)) -> ((a, b, c), (a, b, c)) -> Maybe ((a, b, c), (a, b, c))
forall a. a -> Maybe a
Just ((a
a, b
b, c
cp), (a
a, b
b, c
cs))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing) -> Maybe ((a, b, c), (a, b, c))
forall a. Maybe a
Nothing
splitPrimeSuffix :: (a, b, c) -> Maybe ((a, b, c), (a, b, c))
splitPrimeSuffix (a
a, b
b, c
c) = case (a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a, b -> Maybe (b, b)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix b
b, c -> Maybe (c, c)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix c
c)
of (Maybe (a, a)
_, Maybe (b, b)
_, Just (c
cp, c
cs)) -> ((a, b, c), (a, b, c)) -> Maybe ((a, b, c), (a, b, c))
forall a. a -> Maybe a
Just ((a
a, b
b, c
cp), (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
cs))
(Maybe (a, a)
_, Just (b
bp, b
bs), Maybe (c, c)
Nothing) -> ((a, b, c), (a, b, c)) -> Maybe ((a, b, c), (a, b, c))
forall a. a -> Maybe a
Just ((a
a, b
bp, c
c), (a
forall a. Monoid a => a
mempty, b
bs, c
c))
(Just (a
ap, a
as), Maybe (b, b)
Nothing, Maybe (c, c)
Nothing) -> ((a, b, c), (a, b, c)) -> Maybe ((a, b, c), (a, b, c))
forall a. a -> Maybe a
Just ((a
ap, b
b, c
c), (a
as, b
b, c
c))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing) -> Maybe ((a, b, c), (a, b, c))
forall a. Maybe a
Nothing
inits :: (a, b, c) -> [(a, b, c)]
inits (a
a, b
b, c
c) = (a -> (a, b, c)) -> [a] -> [(a, b, c)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty)) (a -> [a]
forall m. FactorialMonoid m => m -> [m]
inits a
a)
[(a, b, c)] -> [(a, b, c)] -> [(a, b, c)]
forall a. [a] -> [a] -> [a]
++ (b -> (a, b, c)) -> [b] -> [(a, b, c)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (a
a, b
b1, c
forall a. Monoid a => a
mempty)) ([b] -> [b]
forall a. HasCallStack => [a] -> [a]
List.tail ([b] -> [b]) -> [b] -> [b]
forall a b. (a -> b) -> a -> b
$ b -> [b]
forall m. FactorialMonoid m => m -> [m]
inits b
b)
[(a, b, c)] -> [(a, b, c)] -> [(a, b, c)]
forall a. [a] -> [a] -> [a]
++ (c -> (a, b, c)) -> [c] -> [(a, b, c)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (a
a, b
b, c
c1)) ([c] -> [c]
forall a. HasCallStack => [a] -> [a]
List.tail ([c] -> [c]) -> [c] -> [c]
forall a b. (a -> b) -> a -> b
$ c -> [c]
forall m. FactorialMonoid m => m -> [m]
inits c
c)
tails :: (a, b, c) -> [(a, b, c)]
tails (a
a, b
b, c
c) = (a -> (a, b, c)) -> [a] -> [(a, b, c)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, b
b, c
c)) (a -> [a]
forall m. FactorialMonoid m => m -> [m]
tails a
a)
[(a, b, c)] -> [(a, b, c)] -> [(a, b, c)]
forall a. [a] -> [a] -> [a]
++ (b -> (a, b, c)) -> [b] -> [(a, b, c)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (a
forall a. Monoid a => a
mempty, b
b1, c
c)) ([b] -> [b]
forall a. HasCallStack => [a] -> [a]
List.tail ([b] -> [b]) -> [b] -> [b]
forall a b. (a -> b) -> a -> b
$ b -> [b]
forall m. FactorialMonoid m => m -> [m]
tails b
b)
[(a, b, c)] -> [(a, b, c)] -> [(a, b, c)]
forall a. [a] -> [a] -> [a]
++ (c -> (a, b, c)) -> [c] -> [(a, b, c)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
c1)) ([c] -> [c]
forall a. HasCallStack => [a] -> [a]
List.tail ([c] -> [c]) -> [c] -> [c]
forall a b. (a -> b) -> a -> b
$ c -> [c]
forall m. FactorialMonoid m => m -> [m]
tails c
c)
span :: ((a, b, c) -> Bool) -> (a, b, c) -> ((a, b, c), (a, b, c))
span (a, b, c) -> Bool
p (a
a, b
b, c
c) = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs))
where (a
ap, a
as) = (a -> Bool) -> a -> (a, a)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c) -> Bool
p ((a, b, c) -> Bool) -> (a -> (a, b, c)) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b, c)
forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3) a
a
(b
bp, b
bs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as = (b -> Bool) -> b -> (b, b)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c) -> Bool
p ((a, b, c) -> Bool) -> (b -> (a, b, c)) -> b -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b, c)
forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3) b
b
| Bool
otherwise = (b
forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs = (c -> Bool) -> c -> (c, c)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c) -> Bool
p ((a, b, c) -> Bool) -> (c -> (a, b, c)) -> c -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> (a, b, c)
forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3) c
c
| Bool
otherwise = (c
forall a. Monoid a => a
mempty, c
c)
spanMaybe :: forall s.
s
-> (s -> (a, b, c) -> Maybe s)
-> (a, b, c)
-> ((a, b, c), (a, b, c), s)
spanMaybe s
s0 s -> (a, b, c) -> Maybe s
f (a
a, b
b, c
c) | Bool -> Bool
not (a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty), (a
as, b
b, c
c), s
s1)
| Bool -> Bool
not (b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, c
forall a. Monoid a => a
mempty), (a
as, b
bs, c
c), s
s2)
| Bool
otherwise = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs), s
s3)
where (a
ap, a
as, s
s1) = s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall s. s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s0 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s ((a, b, c) -> Maybe s) -> (a -> (a, b, c)) -> a -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b, c)
forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3) a
a
(b
bp, b
bs, s
s2) = s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall s. s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s1 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s ((a, b, c) -> Maybe s) -> (b -> (a, b, c)) -> b -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b, c)
forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3) b
b
(c
cp, c
cs, s
s3) = s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall s. s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s2 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s ((a, b, c) -> Maybe s) -> (c -> (a, b, c)) -> c -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> (a, b, c)
forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3) c
c
spanMaybe' :: forall s.
s
-> (s -> (a, b, c) -> Maybe s)
-> (a, b, c)
-> ((a, b, c), (a, b, c), s)
spanMaybe' s
s0 s -> (a, b, c) -> Maybe s
f (a
a, b
b, c
c) | Bool -> Bool
not (a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty), (a
as, b
b, c
c), s
s1)
| Bool -> Bool
not (b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, c
forall a. Monoid a => a
mempty), (a
as, b
bs, c
c), s
s2)
| Bool
otherwise = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs), s
s3)
where (a
ap, a
as, s
s1) = s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall s. s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s0 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s ((a, b, c) -> Maybe s) -> (a -> (a, b, c)) -> a -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b, c)
forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3) a
a
(b
bp, b
bs, s
s2) = s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall s. s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s1 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s ((a, b, c) -> Maybe s) -> (b -> (a, b, c)) -> b -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b, c)
forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3) b
b
(c
cp, c
cs, s
s3) = s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall s. s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s2 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s ((a, b, c) -> Maybe s) -> (c -> (a, b, c)) -> c -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> (a, b, c)
forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3) c
c
splitAt :: Int -> (a, b, c) -> ((a, b, c), (a, b, c))
splitAt Int
n (a
a, b
b, c
c) = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs))
where (a
ap, a
as) = Int -> a -> (a, a)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n a
a
(b
bp, b
bs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as = Int -> b -> (b, b)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- a -> Int
forall m. Factorial m => m -> Int
length a
a) b
b
| Bool
otherwise = (b
forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs = Int -> c -> (c, c)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- a -> Int
forall m. Factorial m => m -> Int
length a
a Int -> Int -> Int
forall a. Num a => a -> a -> a
- b -> Int
forall m. Factorial m => m -> Int
length b
b) c
c
| Bool
otherwise = (c
forall a. Monoid a => a
mempty, c
c)
{-# INLINE fromFstOf3 #-}
fromFstOf3 :: (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3 :: forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3 a
a = (a
a, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty)
{-# INLINE fromSndOf3 #-}
fromSndOf3 :: (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3 :: forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3 b
b = (a
forall a. Monoid a => a
mempty, b
b, c
forall a. Monoid a => a
mempty)
{-# INLINE fromThdOf3 #-}
fromThdOf3 :: (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3 :: forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3 c
c = (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
c)
instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c, FactorialMonoid d) =>
FactorialMonoid (a, b, c, d) where
splitPrimePrefix :: (a, b, c, d) -> Maybe ((a, b, c, d), (a, b, c, d))
splitPrimePrefix (a
a, b
b, c
c, d
d) = case (a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a, b -> Maybe (b, b)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix b
b, c -> Maybe (c, c)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix c
c, d -> Maybe (d, d)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix d
d)
of (Just (a
ap, a
as), Maybe (b, b)
_, Maybe (c, c)
_, Maybe (d, d)
_) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
ap, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty), (a
as, b
b, c
c, d
d))
(Maybe (a, a)
Nothing, Just (b
bp, b
bs), Maybe (c, c)
_, Maybe (d, d)
_) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
a, b
bp, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty), (a
a, b
bs, c
c, d
d))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Just (c
cp, c
cs), Maybe (d, d)
_) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
a, b
b, c
cp, d
forall a. Monoid a => a
mempty), (a
a, b
b, c
cs, d
d))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Just (d
dp, d
ds)) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
a, b
b, c
c, d
dp), (a
a, b
b, c
c, d
ds))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. Maybe a
Nothing
splitPrimeSuffix :: (a, b, c, d) -> Maybe ((a, b, c, d), (a, b, c, d))
splitPrimeSuffix (a
a, b
b, c
c, d
d) = case (a -> Maybe (a, a)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a, b -> Maybe (b, b)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix b
b, c -> Maybe (c, c)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix c
c, d -> Maybe (d, d)
forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix d
d)
of (Maybe (a, a)
_, Maybe (b, b)
_, Maybe (c, c)
_, Just (d
dp, d
ds)) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
a, b
b, c
c, d
dp), (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
ds))
(Maybe (a, a)
_, Maybe (b, b)
_, Just (c
cp, c
cs), Maybe (d, d)
Nothing) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
a, b
b, c
cp, d
d), (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
cs, d
d))
(Maybe (a, a)
_, Just (b
bp, b
bs), Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
a, b
bp, c
c, d
d), (a
forall a. Monoid a => a
mempty, b
bs, c
c, d
d))
(Just (a
ap, a
as), Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> ((a, b, c, d), (a, b, c, d)) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. a -> Maybe a
Just ((a
ap, b
b, c
c, d
d), (a
as, b
b, c
c, d
d))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> Maybe ((a, b, c, d), (a, b, c, d))
forall a. Maybe a
Nothing
inits :: (a, b, c, d) -> [(a, b, c, d)]
inits (a
a, b
b, c
c, d
d) = (a -> (a, b, c, d)) -> [a] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty)) (a -> [a]
forall m. FactorialMonoid m => m -> [m]
inits a
a)
[(a, b, c, d)] -> [(a, b, c, d)] -> [(a, b, c, d)]
forall a. [a] -> [a] -> [a]
++ (b -> (a, b, c, d)) -> [b] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (a
a, b
b1, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty)) ([b] -> [b]
forall a. HasCallStack => [a] -> [a]
List.tail ([b] -> [b]) -> [b] -> [b]
forall a b. (a -> b) -> a -> b
$ b -> [b]
forall m. FactorialMonoid m => m -> [m]
inits b
b)
[(a, b, c, d)] -> [(a, b, c, d)] -> [(a, b, c, d)]
forall a. [a] -> [a] -> [a]
++ (c -> (a, b, c, d)) -> [c] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (a
a, b
b, c
c1, d
forall a. Monoid a => a
mempty)) ([c] -> [c]
forall a. HasCallStack => [a] -> [a]
List.tail ([c] -> [c]) -> [c] -> [c]
forall a b. (a -> b) -> a -> b
$ c -> [c]
forall m. FactorialMonoid m => m -> [m]
inits c
c)
[(a, b, c, d)] -> [(a, b, c, d)] -> [(a, b, c, d)]
forall a. [a] -> [a] -> [a]
++ (d -> (a, b, c, d)) -> [d] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\d
d1-> (a
a, b
b, c
c, d
d1)) ([d] -> [d]
forall a. HasCallStack => [a] -> [a]
List.tail ([d] -> [d]) -> [d] -> [d]
forall a b. (a -> b) -> a -> b
$ d -> [d]
forall m. FactorialMonoid m => m -> [m]
inits d
d)
tails :: (a, b, c, d) -> [(a, b, c, d)]
tails (a
a, b
b, c
c, d
d) = (a -> (a, b, c, d)) -> [a] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, b
b, c
c, d
d)) (a -> [a]
forall m. FactorialMonoid m => m -> [m]
tails a
a)
[(a, b, c, d)] -> [(a, b, c, d)] -> [(a, b, c, d)]
forall a. [a] -> [a] -> [a]
++ (b -> (a, b, c, d)) -> [b] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (a
forall a. Monoid a => a
mempty, b
b1, c
c, d
d)) ([b] -> [b]
forall a. HasCallStack => [a] -> [a]
List.tail ([b] -> [b]) -> [b] -> [b]
forall a b. (a -> b) -> a -> b
$ b -> [b]
forall m. FactorialMonoid m => m -> [m]
tails b
b)
[(a, b, c, d)] -> [(a, b, c, d)] -> [(a, b, c, d)]
forall a. [a] -> [a] -> [a]
++ (c -> (a, b, c, d)) -> [c] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
c1, d
d)) ([c] -> [c]
forall a. HasCallStack => [a] -> [a]
List.tail ([c] -> [c]) -> [c] -> [c]
forall a b. (a -> b) -> a -> b
$ c -> [c]
forall m. FactorialMonoid m => m -> [m]
tails c
c)
[(a, b, c, d)] -> [(a, b, c, d)] -> [(a, b, c, d)]
forall a. [a] -> [a] -> [a]
++ (d -> (a, b, c, d)) -> [d] -> [(a, b, c, d)]
forall a b. (a -> b) -> [a] -> [b]
List.map (\d
d1-> (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
d1)) ([d] -> [d]
forall a. HasCallStack => [a] -> [a]
List.tail ([d] -> [d]) -> [d] -> [d]
forall a b. (a -> b) -> a -> b
$ d -> [d]
forall m. FactorialMonoid m => m -> [m]
tails d
d)
span :: ((a, b, c, d) -> Bool)
-> (a, b, c, d) -> ((a, b, c, d), (a, b, c, d))
span (a, b, c, d) -> Bool
p (a
a, b
b, c
c, d
d) = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds))
where (a
ap, a
as) = (a -> Bool) -> a -> (a, a)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p ((a, b, c, d) -> Bool) -> (a -> (a, b, c, d)) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b, c, d)
forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4) a
a
(b
bp, b
bs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as = (b -> Bool) -> b -> (b, b)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p ((a, b, c, d) -> Bool) -> (b -> (a, b, c, d)) -> b -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b, c, d)
forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4) b
b
| Bool
otherwise = (b
forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs = (c -> Bool) -> c -> (c, c)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p ((a, b, c, d) -> Bool) -> (c -> (a, b, c, d)) -> c -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> (a, b, c, d)
forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4) c
c
| Bool
otherwise = (c
forall a. Monoid a => a
mempty, c
c)
(d
dp, d
ds) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs Bool -> Bool -> Bool
&& c -> Bool
forall m. MonoidNull m => m -> Bool
null c
cs = (d -> Bool) -> d -> (d, d)
forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p ((a, b, c, d) -> Bool) -> (d -> (a, b, c, d)) -> d -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. d -> (a, b, c, d)
forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4) d
d
| Bool
otherwise = (d
forall a. Monoid a => a
mempty, d
d)
spanMaybe :: forall s.
s
-> (s -> (a, b, c, d) -> Maybe s)
-> (a, b, c, d)
-> ((a, b, c, d), (a, b, c, d), s)
spanMaybe s
s0 s -> (a, b, c, d) -> Maybe s
f (a
a, b
b, c
c, d
d) | Bool -> Bool
not (a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty), (a
as, b
b, c
c, d
d), s
s1)
| Bool -> Bool
not (b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty), (a
as, b
bs, c
c, d
d), s
s2)
| Bool -> Bool
not (c -> Bool
forall m. MonoidNull m => m -> Bool
null c
cs) = ((a
ap, b
bp, c
cp, d
forall a. Monoid a => a
mempty), (a
as, b
bs, c
cs, d
d), s
s3)
| Bool
otherwise = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds), s
s4)
where (a
ap, a
as, s
s1) = s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall s. s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s0 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (a -> (a, b, c, d)) -> a -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b, c, d)
forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4) a
a
(b
bp, b
bs, s
s2) = s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall s. s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s1 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (b -> (a, b, c, d)) -> b -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b, c, d)
forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4) b
b
(c
cp, c
cs, s
s3) = s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall s. s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s2 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (c -> (a, b, c, d)) -> c -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> (a, b, c, d)
forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4) c
c
(d
dp, d
ds, s
s4) = s -> (s -> d -> Maybe s) -> d -> (d, d, s)
forall s. s -> (s -> d -> Maybe s) -> d -> (d, d, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s3 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (d -> (a, b, c, d)) -> d -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. d -> (a, b, c, d)
forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4) d
d
spanMaybe' :: forall s.
s
-> (s -> (a, b, c, d) -> Maybe s)
-> (a, b, c, d)
-> ((a, b, c, d), (a, b, c, d), s)
spanMaybe' s
s0 s -> (a, b, c, d) -> Maybe s
f (a
a, b
b, c
c, d
d) | Bool -> Bool
not (a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty), (a
as, b
b, c
c, d
d), s
s1)
| Bool -> Bool
not (b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty), (a
as, b
bs, c
c, d
d), s
s2)
| Bool -> Bool
not (c -> Bool
forall m. MonoidNull m => m -> Bool
null c
cs) = ((a
ap, b
bp, c
cp, d
forall a. Monoid a => a
mempty), (a
as, b
bs, c
cs, d
d), s
s3)
| Bool
otherwise = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds), s
s4)
where (a
ap, a
as, s
s1) = s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall s. s -> (s -> a -> Maybe s) -> a -> (a, a, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s0 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (a -> (a, b, c, d)) -> a -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b, c, d)
forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4) a
a
(b
bp, b
bs, s
s2) = s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall s. s -> (s -> b -> Maybe s) -> b -> (b, b, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s1 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (b -> (a, b, c, d)) -> b -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b, c, d)
forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4) b
b
(c
cp, c
cs, s
s3) = s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall s. s -> (s -> c -> Maybe s) -> c -> (c, c, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s2 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (c -> (a, b, c, d)) -> c -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c -> (a, b, c, d)
forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4) c
c
(d
dp, d
ds, s
s4) = s -> (s -> d -> Maybe s) -> d -> (d, d, s)
forall s. s -> (s -> d -> Maybe s) -> d -> (d, d, s)
forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s3 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s ((a, b, c, d) -> Maybe s) -> (d -> (a, b, c, d)) -> d -> Maybe s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. d -> (a, b, c, d)
forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4) d
d
splitAt :: Int -> (a, b, c, d) -> ((a, b, c, d), (a, b, c, d))
splitAt Int
n (a
a, b
b, c
c, d
d) = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds))
where (a
ap, a
as) = Int -> a -> (a, a)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n a
a
(b
bp, b
bs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as = Int -> b -> (b, b)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- a -> Int
forall m. Factorial m => m -> Int
length a
a) b
b
| Bool
otherwise = (b
forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs = Int -> c -> (c, c)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- a -> Int
forall m. Factorial m => m -> Int
length a
a Int -> Int -> Int
forall a. Num a => a -> a -> a
- b -> Int
forall m. Factorial m => m -> Int
length b
b) c
c
| Bool
otherwise = (c
forall a. Monoid a => a
mempty, c
c)
(d
dp, d
ds) | a -> Bool
forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& b -> Bool
forall m. MonoidNull m => m -> Bool
null b
bs Bool -> Bool -> Bool
&& c -> Bool
forall m. MonoidNull m => m -> Bool
null c
cs = Int -> d -> (d, d)
forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- a -> Int
forall m. Factorial m => m -> Int
length a
a Int -> Int -> Int
forall a. Num a => a -> a -> a
- b -> Int
forall m. Factorial m => m -> Int
length b
b Int -> Int -> Int
forall a. Num a => a -> a -> a
- c -> Int
forall m. Factorial m => m -> Int
length c
c) d
d
| Bool
otherwise = (d
forall a. Monoid a => a
mempty, d
d)
{-# INLINE fromFstOf4 #-}
fromFstOf4 :: (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4 :: forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4 a
a = (a
a, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty)
{-# INLINE fromSndOf4 #-}
fromSndOf4 :: (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4 :: forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4 b
b = (a
forall a. Monoid a => a
mempty, b
b, c
forall a. Monoid a => a
mempty, d
forall a. Monoid a => a
mempty)
{-# INLINE fromThdOf4 #-}
fromThdOf4 :: (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4 :: forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4 c
c = (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
c, d
forall a. Monoid a => a
mempty)
{-# INLINE fromFthOf4 #-}
fromFthOf4 :: (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4 :: forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4 d
d = (a
forall a. Monoid a => a
mempty, b
forall a. Monoid a => a
mempty, c
forall a. Monoid a => a
mempty, d
d)
instance FactorialMonoid [x] where
splitPrimePrefix :: [x] -> Maybe ([x], [x])
splitPrimePrefix [] = Maybe ([x], [x])
forall a. Maybe a
Nothing
splitPrimePrefix (x
x:[x]
xs) = ([x], [x]) -> Maybe ([x], [x])
forall a. a -> Maybe a
Just ([x
x], [x]
xs)
splitPrimeSuffix :: [x] -> Maybe ([x], [x])
splitPrimeSuffix [] = Maybe ([x], [x])
forall a. Maybe a
Nothing
splitPrimeSuffix [x]
xs = ([x], [x]) -> Maybe ([x], [x])
forall a. a -> Maybe a
Just (([x] -> [x]) -> [x] -> ([x], [x])
forall {a} {c}. ([a] -> c) -> [a] -> (c, [a])
splitLast [x] -> [x]
forall a. a -> a
id [x]
xs)
where splitLast :: ([a] -> c) -> [a] -> (c, [a])
splitLast [a] -> c
f last :: [a]
last@[a
_] = ([a] -> c
f [], [a]
last)
splitLast [a] -> c
f ~(a
x:[a]
rest) = ([a] -> c) -> [a] -> (c, [a])
splitLast ([a] -> c
f ([a] -> c) -> ([a] -> [a]) -> [a] -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a
xa -> [a] -> [a]
forall a. a -> [a] -> [a]
:)) [a]
rest
inits :: [x] -> [[x]]
inits = [x] -> [[x]]
forall x. [x] -> [[x]]
List.inits
tails :: [x] -> [[x]]
tails = [x] -> [[x]]
forall x. [x] -> [[x]]
List.tails
break :: ([x] -> Bool) -> [x] -> ([x], [x])
break [x] -> Bool
f = (x -> Bool) -> [x] -> ([x], [x])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.break ([x] -> Bool
f ([x] -> Bool) -> (x -> [x]) -> x -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x -> [x] -> [x]
forall a. a -> [a] -> [a]
:[]))
span :: ([x] -> Bool) -> [x] -> ([x], [x])
span [x] -> Bool
f = (x -> Bool) -> [x] -> ([x], [x])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.span ([x] -> Bool
f ([x] -> Bool) -> (x -> [x]) -> x -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x -> [x] -> [x]
forall a. a -> [a] -> [a]
:[]))
dropWhile :: ([x] -> Bool) -> [x] -> [x]
dropWhile [x] -> Bool
f = (x -> Bool) -> [x] -> [x]
forall a. (a -> Bool) -> [a] -> [a]
List.dropWhile ([x] -> Bool
f ([x] -> Bool) -> (x -> [x]) -> x -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x -> [x] -> [x]
forall a. a -> [a] -> [a]
:[]))
takeWhile :: ([x] -> Bool) -> [x] -> [x]
takeWhile [x] -> Bool
f = (x -> Bool) -> [x] -> [x]
forall a. (a -> Bool) -> [a] -> [a]
List.takeWhile ([x] -> Bool
f ([x] -> Bool) -> (x -> [x]) -> x -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x -> [x] -> [x]
forall a. a -> [a] -> [a]
:[]))
spanMaybe :: forall s. s -> (s -> [x] -> Maybe s) -> [x] -> ([x], [x], s)
spanMaybe s
s0 s -> [x] -> Maybe s
f [x]
l = ([x] -> [x]
prefix' [], [x] -> [x]
suffix' [], s
s')
where ([x] -> [x]
prefix', [x] -> [x]
suffix', s
s', Bool
_) = (([x] -> [x], [x] -> [x], s, Bool)
-> x -> ([x] -> [x], [x] -> [x], s, Bool))
-> ([x] -> [x], [x] -> [x], s, Bool)
-> [x]
-> ([x] -> [x], [x] -> [x], s, Bool)
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' ([x] -> [x], [x] -> [x], s, Bool)
-> x -> ([x] -> [x], [x] -> [x], s, Bool)
forall {c}.
([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g ([x] -> [x]
forall a. a -> a
id, [x] -> [x]
forall a. a -> a
id, s
s0, Bool
True) [x]
l
g :: ([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g ([x] -> c
prefix, [x] -> [x]
suffix, s
s1, Bool
live) x
x | Bool
live, Just s
s2 <- s -> [x] -> Maybe s
f s
s1 [x
x] = ([x] -> c
prefix ([x] -> c) -> ([x] -> [x]) -> [x] -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xx -> [x] -> [x]
forall a. a -> [a] -> [a]
:), [x] -> [x]
forall a. a -> a
id, s
s2, Bool
True)
| Bool
otherwise = ([x] -> c
prefix, [x] -> [x]
suffix ([x] -> [x]) -> ([x] -> [x]) -> [x] -> [x]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xx -> [x] -> [x]
forall a. a -> [a] -> [a]
:), s
s1, Bool
False)
spanMaybe' :: forall s. s -> (s -> [x] -> Maybe s) -> [x] -> ([x], [x], s)
spanMaybe' s
s0 s -> [x] -> Maybe s
f [x]
l = ([x] -> [x]
prefix' [], [x] -> [x]
suffix' [], s
s')
where ([x] -> [x]
prefix', [x] -> [x]
suffix', s
s', Bool
_) = (([x] -> [x], [x] -> [x], s, Bool)
-> x -> ([x] -> [x], [x] -> [x], s, Bool))
-> ([x] -> [x], [x] -> [x], s, Bool)
-> [x]
-> ([x] -> [x], [x] -> [x], s, Bool)
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' ([x] -> [x], [x] -> [x], s, Bool)
-> x -> ([x] -> [x], [x] -> [x], s, Bool)
forall {c}.
([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g ([x] -> [x]
forall a. a -> a
id, [x] -> [x]
forall a. a -> a
id, s
s0, Bool
True) [x]
l
g :: ([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g ([x] -> c
prefix, [x] -> [x]
suffix, s
s1, Bool
live) x
x | Bool
live, Just s
s2 <- s -> [x] -> Maybe s
f s
s1 [x
x] = s
-> ([x] -> c, [x] -> [x], s, Bool)
-> ([x] -> c, [x] -> [x], s, Bool)
forall a b. a -> b -> b
seq s
s2 (([x] -> c, [x] -> [x], s, Bool)
-> ([x] -> c, [x] -> [x], s, Bool))
-> ([x] -> c, [x] -> [x], s, Bool)
-> ([x] -> c, [x] -> [x], s, Bool)
forall a b. (a -> b) -> a -> b
$ ([x] -> c
prefix ([x] -> c) -> ([x] -> [x]) -> [x] -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xx -> [x] -> [x]
forall a. a -> [a] -> [a]
:), [x] -> [x]
forall a. a -> a
id, s
s2, Bool
True)
| Bool
otherwise = ([x] -> c
prefix, [x] -> [x]
suffix ([x] -> [x]) -> ([x] -> [x]) -> [x] -> [x]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xx -> [x] -> [x]
forall a. a -> [a] -> [a]
:), s
s1, Bool
False)
splitAt :: Int -> [x] -> ([x], [x])
splitAt = Int -> [x] -> ([x], [x])
forall x. Int -> [x] -> ([x], [x])
List.splitAt
drop :: Int -> [x] -> [x]
drop = Int -> [x] -> [x]
forall x. Int -> [x] -> [x]
List.drop
take :: Int -> [x] -> [x]
take = Int -> [x] -> [x]
forall x. Int -> [x] -> [x]
List.take
instance FactorialMonoid ByteString.ByteString where
splitPrimePrefix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimePrefix ByteString
x = if ByteString -> Bool
ByteString.null ByteString
x then Maybe (ByteString, ByteString)
forall a. Maybe a
Nothing else (ByteString, ByteString) -> Maybe (ByteString, ByteString)
forall a. a -> Maybe a
Just (Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt Int
1 ByteString
x)
splitPrimeSuffix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimeSuffix ByteString
x = if ByteString -> Bool
ByteString.null ByteString
x then Maybe (ByteString, ByteString)
forall a. Maybe a
Nothing else (ByteString, ByteString) -> Maybe (ByteString, ByteString)
forall a. a -> Maybe a
Just (Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt (ByteString -> Int
ByteString.length ByteString
x Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) ByteString
x)
inits :: ByteString -> [ByteString]
inits = ByteString -> [ByteString]
ByteString.inits
tails :: ByteString -> [ByteString]
tails = ByteString -> [ByteString]
ByteString.tails
break :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
break ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
ByteString.break (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
span :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
span ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
ByteString.span (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
spanMaybe :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe s
s0 s -> ByteString -> Maybe s
f ByteString
b = case (Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s))
-> ((Int, s) -> (Int, s)) -> ByteString -> (Int, s) -> (Int, s)
forall a. (Word8 -> a -> a) -> a -> ByteString -> a
ByteString.foldr Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g (Int, s) -> (Int, s)
forall a. a -> a
id ByteString
b (Int
0, s
s0)
of (Int
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt Int
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Word8
w (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
ByteString.singleton Word8
w) = let i' :: Int
i' = Int -> Int
forall a. Enum a => a -> a
succ Int
i :: Int in Int -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq Int
i' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
spanMaybe' :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe' s
s0 s -> ByteString -> Maybe s
f ByteString
b = case (Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s))
-> ((Int, s) -> (Int, s)) -> ByteString -> (Int, s) -> (Int, s)
forall a. (Word8 -> a -> a) -> a -> ByteString -> a
ByteString.foldr Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g (Int, s) -> (Int, s)
forall a. a -> a
id ByteString
b (Int
0, s
s0)
of (Int
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt Int
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Word8
w (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
ByteString.singleton Word8
w) = let i' :: Int
i' = Int -> Int
forall a. Enum a => a -> a
succ Int
i :: Int in Int -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq Int
i' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ s -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq s
s' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
dropWhile :: (ByteString -> Bool) -> ByteString -> ByteString
dropWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
ByteString.dropWhile (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
takeWhile :: (ByteString -> Bool) -> ByteString -> ByteString
takeWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
ByteString.takeWhile (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
split :: (ByteString -> Bool) -> ByteString -> [ByteString]
split ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> [ByteString]
ByteString.splitWith Word8 -> Bool
f'
where f' :: Word8 -> Bool
f' = ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton
splitAt :: Int -> ByteString -> (ByteString, ByteString)
splitAt = Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt
drop :: Int -> ByteString -> ByteString
drop = Int -> ByteString -> ByteString
ByteString.drop
take :: Int -> ByteString -> ByteString
take = Int -> ByteString -> ByteString
ByteString.take
instance FactorialMonoid LazyByteString.ByteString where
splitPrimePrefix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimePrefix ByteString
x = if ByteString -> Bool
LazyByteString.null ByteString
x then Maybe (ByteString, ByteString)
forall a. Maybe a
Nothing
else (ByteString, ByteString) -> Maybe (ByteString, ByteString)
forall a. a -> Maybe a
Just (Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt Int64
1 ByteString
x)
splitPrimeSuffix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimeSuffix ByteString
x = if ByteString -> Bool
LazyByteString.null ByteString
x then Maybe (ByteString, ByteString)
forall a. Maybe a
Nothing
else (ByteString, ByteString) -> Maybe (ByteString, ByteString)
forall a. a -> Maybe a
Just (Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt (ByteString -> Int64
LazyByteString.length ByteString
x Int64 -> Int64 -> Int64
forall a. Num a => a -> a -> a
- Int64
1) ByteString
x)
inits :: ByteString -> [ByteString]
inits = ByteString -> [ByteString]
LazyByteString.inits
tails :: ByteString -> [ByteString]
tails = ByteString -> [ByteString]
LazyByteString.tails
break :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
break ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
LazyByteString.break (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
span :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
span ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
LazyByteString.span (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
spanMaybe :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe s
s0 s -> ByteString -> Maybe s
f ByteString
b = case (Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s))
-> ((Int64, s) -> (Int64, s))
-> ByteString
-> (Int64, s)
-> (Int64, s)
forall a. (Word8 -> a -> a) -> a -> ByteString -> a
LazyByteString.foldr Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g (Int64, s) -> (Int64, s)
forall a. a -> a
id ByteString
b (Int64
0, s
s0)
of (Int64
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt Int64
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Word8
w (Int64, s) -> (Int64, s)
cont (Int64
i, s
s) | Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
LazyByteString.singleton Word8
w) = let i' :: Int64
i' = Int64 -> Int64
forall a. Enum a => a -> a
succ Int64
i :: Int64 in Int64 -> (Int64, s) -> (Int64, s)
forall a b. a -> b -> b
seq Int64
i' ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
spanMaybe' :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe' s
s0 s -> ByteString -> Maybe s
f ByteString
b = case (Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s))
-> ((Int64, s) -> (Int64, s))
-> ByteString
-> (Int64, s)
-> (Int64, s)
forall a. (Word8 -> a -> a) -> a -> ByteString -> a
LazyByteString.foldr Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g (Int64, s) -> (Int64, s)
forall a. a -> a
id ByteString
b (Int64
0, s
s0)
of (Int64
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt Int64
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Word8
w (Int64, s) -> (Int64, s)
cont (Int64
i, s
s)
| Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
LazyByteString.singleton Word8
w) = let i' :: Int64
i' = Int64 -> Int64
forall a. Enum a => a -> a
succ Int64
i :: Int64 in Int64 -> (Int64, s) -> (Int64, s)
forall a b. a -> b -> b
seq Int64
i' ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
forall a b. (a -> b) -> a -> b
$ s -> (Int64, s) -> (Int64, s)
forall a b. a -> b -> b
seq s
s' ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
dropWhile :: (ByteString -> Bool) -> ByteString -> ByteString
dropWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
LazyByteString.dropWhile (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
takeWhile :: (ByteString -> Bool) -> ByteString -> ByteString
takeWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
LazyByteString.takeWhile (ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
split :: (ByteString -> Bool) -> ByteString -> [ByteString]
split ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> [ByteString]
LazyByteString.splitWith Word8 -> Bool
f'
where f' :: Word8 -> Bool
f' = ByteString -> Bool
f (ByteString -> Bool) -> (Word8 -> ByteString) -> Word8 -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton
splitAt :: Int -> ByteString -> (ByteString, ByteString)
splitAt = Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt (Int64 -> ByteString -> (ByteString, ByteString))
-> (Int -> Int64) -> Int -> ByteString -> (ByteString, ByteString)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral
drop :: Int -> ByteString -> ByteString
drop Int
n = Int64 -> ByteString -> ByteString
LazyByteString.drop (Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
take :: Int -> ByteString -> ByteString
take Int
n = Int64 -> ByteString -> ByteString
LazyByteString.take (Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
instance FactorialMonoid Text.Text where
splitPrimePrefix :: Text -> Maybe (Text, Text)
splitPrimePrefix = ((Char, Text) -> (Text, Text))
-> Maybe (Char, Text) -> Maybe (Text, Text)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Char -> Text) -> (Char, Text) -> (Text, Text)
forall b c d. (b -> c) -> (b, d) -> (c, d)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first Char -> Text
Text.singleton) (Maybe (Char, Text) -> Maybe (Text, Text))
-> (Text -> Maybe (Char, Text)) -> Text -> Maybe (Text, Text)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Text -> Maybe (Char, Text)
Text.uncons
splitPrimeSuffix :: Text -> Maybe (Text, Text)
splitPrimeSuffix Text
x = if Text -> Bool
Text.null Text
x then Maybe (Text, Text)
forall a. Maybe a
Nothing else (Text, Text) -> Maybe (Text, Text)
forall a. a -> Maybe a
Just (HasCallStack => Text -> Text
Text -> Text
Text.init Text
x, Char -> Text
Text.singleton (HasCallStack => Text -> Char
Text -> Char
Text.last Text
x))
inits :: Text -> [Text]
inits = Text -> [Text]
Text.inits
tails :: Text -> [Text]
tails = Text -> [Text]
Text.tails
span :: (Text -> Bool) -> Text -> (Text, Text)
span Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
Text.span (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
break :: (Text -> Bool) -> Text -> (Text, Text)
break Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
Text.break (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
dropWhile :: (Text -> Bool) -> Text -> Text
dropWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
Text.dropWhile (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
takeWhile :: (Text -> Bool) -> Text -> Text
takeWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
Text.takeWhile (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
spanMaybe :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe s
s0 s -> Text -> Maybe s
f Text
t = case (Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s))
-> ((Int, s) -> (Int, s)) -> Text -> (Int, s) -> (Int, s)
forall a. (Char -> a -> a) -> a -> Text -> a
Text.foldr Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g (Int, s) -> (Int, s)
forall a. a -> a
id Text
t (Int
0, s
s0)
of (Int
i, s
s') | (Text
prefix, Text
suffix) <- Int -> Text -> (Text, Text)
Text.splitAt Int
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Char
c (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
Text.singleton Char
c) = let i' :: Int
i' = Int -> Int
forall a. Enum a => a -> a
succ Int
i :: Int in Int -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq Int
i' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
spanMaybe' :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe' s
s0 s -> Text -> Maybe s
f Text
t = case (Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s))
-> ((Int, s) -> (Int, s)) -> Text -> (Int, s) -> (Int, s)
forall a. (Char -> a -> a) -> a -> Text -> a
Text.foldr Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g (Int, s) -> (Int, s)
forall a. a -> a
id Text
t (Int
0, s
s0)
of (Int
i, s
s') | (Text
prefix, Text
suffix) <- Int -> Text -> (Text, Text)
Text.splitAt Int
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Char
c (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
Text.singleton Char
c) = let i' :: Int
i' = Int -> Int
forall a. Enum a => a -> a
succ Int
i :: Int in Int -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq Int
i' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ s -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq s
s' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
split :: (Text -> Bool) -> Text -> [Text]
split Text -> Bool
f = (Char -> Bool) -> Text -> [Text]
Text.split Char -> Bool
f'
where f' :: Char -> Bool
f' = Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton
splitAt :: Int -> Text -> (Text, Text)
splitAt = Int -> Text -> (Text, Text)
Text.splitAt
drop :: Int -> Text -> Text
drop = Int -> Text -> Text
Text.drop
take :: Int -> Text -> Text
take = Int -> Text -> Text
Text.take
instance FactorialMonoid LazyText.Text where
splitPrimePrefix :: Text -> Maybe (Text, Text)
splitPrimePrefix = ((Char, Text) -> (Text, Text))
-> Maybe (Char, Text) -> Maybe (Text, Text)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Char -> Text) -> (Char, Text) -> (Text, Text)
forall b c d. (b -> c) -> (b, d) -> (c, d)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first Char -> Text
LazyText.singleton) (Maybe (Char, Text) -> Maybe (Text, Text))
-> (Text -> Maybe (Char, Text)) -> Text -> Maybe (Text, Text)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Text -> Maybe (Char, Text)
LazyText.uncons
splitPrimeSuffix :: Text -> Maybe (Text, Text)
splitPrimeSuffix Text
x = if Text -> Bool
LazyText.null Text
x
then Maybe (Text, Text)
forall a. Maybe a
Nothing
else (Text, Text) -> Maybe (Text, Text)
forall a. a -> Maybe a
Just (HasCallStack => Text -> Text
Text -> Text
LazyText.init Text
x, Char -> Text
LazyText.singleton (HasCallStack => Text -> Char
Text -> Char
LazyText.last Text
x))
inits :: Text -> [Text]
inits = Text -> [Text]
LazyText.inits
tails :: Text -> [Text]
tails = Text -> [Text]
LazyText.tails
span :: (Text -> Bool) -> Text -> (Text, Text)
span Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
LazyText.span (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
break :: (Text -> Bool) -> Text -> (Text, Text)
break Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
LazyText.break (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
dropWhile :: (Text -> Bool) -> Text -> Text
dropWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
LazyText.dropWhile (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
takeWhile :: (Text -> Bool) -> Text -> Text
takeWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
LazyText.takeWhile (Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
spanMaybe :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe s
s0 s -> Text -> Maybe s
f Text
t = case (Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s))
-> ((Int64, s) -> (Int64, s)) -> Text -> (Int64, s) -> (Int64, s)
forall a. (Char -> a -> a) -> a -> Text -> a
LazyText.foldr Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g (Int64, s) -> (Int64, s)
forall a. a -> a
id Text
t (Int64
0, s
s0)
of (Int64
i, s
s') | (Text
prefix, Text
suffix) <- Int64 -> Text -> (Text, Text)
LazyText.splitAt Int64
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Char
c (Int64, s) -> (Int64, s)
cont (Int64
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
LazyText.singleton Char
c) = let i' :: Int64
i' = Int64 -> Int64
forall a. Enum a => a -> a
succ Int64
i :: Int64 in Int64 -> (Int64, s) -> (Int64, s)
forall a b. a -> b -> b
seq Int64
i' ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
spanMaybe' :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe' s
s0 s -> Text -> Maybe s
f Text
t = case (Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s))
-> ((Int64, s) -> (Int64, s)) -> Text -> (Int64, s) -> (Int64, s)
forall a. (Char -> a -> a) -> a -> Text -> a
LazyText.foldr Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g (Int64, s) -> (Int64, s)
forall a. a -> a
id Text
t (Int64
0, s
s0)
of (Int64
i, s
s') | (Text
prefix, Text
suffix) <- Int64 -> Text -> (Text, Text)
LazyText.splitAt Int64
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Char
c (Int64, s) -> (Int64, s)
cont (Int64
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
LazyText.singleton Char
c) = let i' :: Int64
i' = Int64 -> Int64
forall a. Enum a => a -> a
succ Int64
i :: Int64 in Int64 -> (Int64, s) -> (Int64, s)
forall a b. a -> b -> b
seq Int64
i' ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
forall a b. (a -> b) -> a -> b
$ s -> (Int64, s) -> (Int64, s)
forall a b. a -> b -> b
seq s
s' ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
split :: (Text -> Bool) -> Text -> [Text]
split Text -> Bool
f = (Char -> Bool) -> Text -> [Text]
LazyText.split Char -> Bool
f'
where f' :: Char -> Bool
f' = Text -> Bool
f (Text -> Bool) -> (Char -> Text) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton
splitAt :: Int -> Text -> (Text, Text)
splitAt = Int64 -> Text -> (Text, Text)
LazyText.splitAt (Int64 -> Text -> (Text, Text))
-> (Int -> Int64) -> Int -> Text -> (Text, Text)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral
drop :: Int -> Text -> Text
drop Int
n = Int64 -> Text -> Text
LazyText.drop (Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
take :: Int -> Text -> Text
take Int
n = Int64 -> Text -> Text
LazyText.take (Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
instance Ord k => FactorialMonoid (Map.Map k v) where
splitPrimePrefix :: Map k v -> Maybe (Map k v, Map k v)
splitPrimePrefix = (((k, v), Map k v) -> (Map k v, Map k v))
-> Maybe ((k, v), Map k v) -> Maybe (Map k v, Map k v)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((k, v), Map k v) -> (Map k v, Map k v)
forall {k} {a} {b}. ((k, a), b) -> (Map k a, b)
singularize (Maybe ((k, v), Map k v) -> Maybe (Map k v, Map k v))
-> (Map k v -> Maybe ((k, v), Map k v))
-> Map k v
-> Maybe (Map k v, Map k v)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Map k v -> Maybe ((k, v), Map k v)
forall k a. Map k a -> Maybe ((k, a), Map k a)
Map.minViewWithKey
where singularize :: ((k, a), b) -> (Map k a, b)
singularize ((k
k, a
v), b
rest) = (k -> a -> Map k a
forall k a. k -> a -> Map k a
Map.singleton k
k a
v, b
rest)
splitPrimeSuffix :: Map k v -> Maybe (Map k v, Map k v)
splitPrimeSuffix = (((k, v), Map k v) -> (Map k v, Map k v))
-> Maybe ((k, v), Map k v) -> Maybe (Map k v, Map k v)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((k, v), Map k v) -> (Map k v, Map k v)
forall {k} {a} {a}. ((k, a), a) -> (a, Map k a)
singularize (Maybe ((k, v), Map k v) -> Maybe (Map k v, Map k v))
-> (Map k v -> Maybe ((k, v), Map k v))
-> Map k v
-> Maybe (Map k v, Map k v)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Map k v -> Maybe ((k, v), Map k v)
forall k a. Map k a -> Maybe ((k, a), Map k a)
Map.maxViewWithKey
where singularize :: ((k, a), a) -> (a, Map k a)
singularize ((k
k, a
v), a
rest) = (a
rest, k -> a -> Map k a
forall k a. k -> a -> Map k a
Map.singleton k
k a
v)
instance FactorialMonoid (IntMap.IntMap a) where
splitPrimePrefix :: IntMap a -> Maybe (IntMap a, IntMap a)
splitPrimePrefix = (((Int, a), IntMap a) -> (IntMap a, IntMap a))
-> Maybe ((Int, a), IntMap a) -> Maybe (IntMap a, IntMap a)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Int, a), IntMap a) -> (IntMap a, IntMap a)
forall {a} {b}. ((Int, a), b) -> (IntMap a, b)
singularize (Maybe ((Int, a), IntMap a) -> Maybe (IntMap a, IntMap a))
-> (IntMap a -> Maybe ((Int, a), IntMap a))
-> IntMap a
-> Maybe (IntMap a, IntMap a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> Maybe ((Int, a), IntMap a)
forall a. IntMap a -> Maybe ((Int, a), IntMap a)
IntMap.minViewWithKey
where singularize :: ((Int, a), b) -> (IntMap a, b)
singularize ((Int
k, a
v), b
rest) = (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
IntMap.singleton Int
k a
v, b
rest)
splitPrimeSuffix :: IntMap a -> Maybe (IntMap a, IntMap a)
splitPrimeSuffix = (((Int, a), IntMap a) -> (IntMap a, IntMap a))
-> Maybe ((Int, a), IntMap a) -> Maybe (IntMap a, IntMap a)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Int, a), IntMap a) -> (IntMap a, IntMap a)
forall {a} {a}. ((Int, a), a) -> (a, IntMap a)
singularize (Maybe ((Int, a), IntMap a) -> Maybe (IntMap a, IntMap a))
-> (IntMap a -> Maybe ((Int, a), IntMap a))
-> IntMap a
-> Maybe (IntMap a, IntMap a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> Maybe ((Int, a), IntMap a)
forall a. IntMap a -> Maybe ((Int, a), IntMap a)
IntMap.maxViewWithKey
where singularize :: ((Int, a), a) -> (a, IntMap a)
singularize ((Int
k, a
v), a
rest) = (a
rest, Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
IntMap.singleton Int
k a
v)
instance FactorialMonoid IntSet.IntSet where
splitPrimePrefix :: IntSet -> Maybe (IntSet, IntSet)
splitPrimePrefix = ((Int, IntSet) -> (IntSet, IntSet))
-> Maybe (Int, IntSet) -> Maybe (IntSet, IntSet)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Int, IntSet) -> (IntSet, IntSet)
forall {b}. (Int, b) -> (IntSet, b)
singularize (Maybe (Int, IntSet) -> Maybe (IntSet, IntSet))
-> (IntSet -> Maybe (Int, IntSet))
-> IntSet
-> Maybe (IntSet, IntSet)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
IntSet.minView
where singularize :: (Int, b) -> (IntSet, b)
singularize (Int
min, b
rest) = (Int -> IntSet
IntSet.singleton Int
min, b
rest)
splitPrimeSuffix :: IntSet -> Maybe (IntSet, IntSet)
splitPrimeSuffix = ((Int, IntSet) -> (IntSet, IntSet))
-> Maybe (Int, IntSet) -> Maybe (IntSet, IntSet)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Int, IntSet) -> (IntSet, IntSet)
forall {a}. (Int, a) -> (a, IntSet)
singularize (Maybe (Int, IntSet) -> Maybe (IntSet, IntSet))
-> (IntSet -> Maybe (Int, IntSet))
-> IntSet
-> Maybe (IntSet, IntSet)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
IntSet.maxView
where singularize :: (Int, a) -> (a, IntSet)
singularize (Int
max, a
rest) = (a
rest, Int -> IntSet
IntSet.singleton Int
max)
instance FactorialMonoid (Sequence.Seq a) where
splitPrimePrefix :: Seq a -> Maybe (Seq a, Seq a)
splitPrimePrefix Seq a
q = case Seq a -> ViewL a
forall a. Seq a -> ViewL a
Sequence.viewl Seq a
q
of ViewL a
Sequence.EmptyL -> Maybe (Seq a, Seq a)
forall a. Maybe a
Nothing
a
hd Sequence.:< Seq a
rest -> (Seq a, Seq a) -> Maybe (Seq a, Seq a)
forall a. a -> Maybe a
Just (a -> Seq a
forall a. a -> Seq a
Sequence.singleton a
hd, Seq a
rest)
splitPrimeSuffix :: Seq a -> Maybe (Seq a, Seq a)
splitPrimeSuffix Seq a
q = case Seq a -> ViewR a
forall a. Seq a -> ViewR a
Sequence.viewr Seq a
q
of ViewR a
Sequence.EmptyR -> Maybe (Seq a, Seq a)
forall a. Maybe a
Nothing
Seq a
rest Sequence.:> a
last -> (Seq a, Seq a) -> Maybe (Seq a, Seq a)
forall a. a -> Maybe a
Just (Seq a
rest, a -> Seq a
forall a. a -> Seq a
Sequence.singleton a
last)
inits :: Seq a -> [Seq a]
inits = Seq (Seq a) -> [Seq a]
forall a. Seq a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
Foldable.toList (Seq (Seq a) -> [Seq a])
-> (Seq a -> Seq (Seq a)) -> Seq a -> [Seq a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Seq a -> Seq (Seq a)
forall a. Seq a -> Seq (Seq a)
Sequence.inits
tails :: Seq a -> [Seq a]
tails = Seq (Seq a) -> [Seq a]
forall a. Seq a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
Foldable.toList (Seq (Seq a) -> [Seq a])
-> (Seq a -> Seq (Seq a)) -> Seq a -> [Seq a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Seq a -> Seq (Seq a)
forall a. Seq a -> Seq (Seq a)
Sequence.tails
span :: (Seq a -> Bool) -> Seq a -> (Seq a, Seq a)
span Seq a -> Bool
f = (a -> Bool) -> Seq a -> (Seq a, Seq a)
forall a. (a -> Bool) -> Seq a -> (Seq a, Seq a)
Sequence.spanl (Seq a -> Bool
f (Seq a -> Bool) -> (a -> Seq a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Seq a
forall a. a -> Seq a
Sequence.singleton)
break :: (Seq a -> Bool) -> Seq a -> (Seq a, Seq a)
break Seq a -> Bool
f = (a -> Bool) -> Seq a -> (Seq a, Seq a)
forall a. (a -> Bool) -> Seq a -> (Seq a, Seq a)
Sequence.breakl (Seq a -> Bool
f (Seq a -> Bool) -> (a -> Seq a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Seq a
forall a. a -> Seq a
Sequence.singleton)
dropWhile :: (Seq a -> Bool) -> Seq a -> Seq a
dropWhile Seq a -> Bool
f = (a -> Bool) -> Seq a -> Seq a
forall a. (a -> Bool) -> Seq a -> Seq a
Sequence.dropWhileL (Seq a -> Bool
f (Seq a -> Bool) -> (a -> Seq a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Seq a
forall a. a -> Seq a
Sequence.singleton)
takeWhile :: (Seq a -> Bool) -> Seq a -> Seq a
takeWhile Seq a -> Bool
f = (a -> Bool) -> Seq a -> Seq a
forall a. (a -> Bool) -> Seq a -> Seq a
Sequence.takeWhileL (Seq a -> Bool
f (Seq a -> Bool) -> (a -> Seq a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Seq a
forall a. a -> Seq a
Sequence.singleton)
spanMaybe :: forall s.
s -> (s -> Seq a -> Maybe s) -> Seq a -> (Seq a, Seq a, s)
spanMaybe s
s0 s -> Seq a -> Maybe s
f Seq a
b = case (a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s))
-> ((Int, s) -> (Int, s)) -> Seq a -> (Int, s) -> (Int, s)
forall a b. (a -> b -> b) -> b -> Seq a -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Foldable.foldr a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g (Int, s) -> (Int, s)
forall a. a -> a
id Seq a
b (Int
0, s
s0)
of (Int
i, s
s') | (Seq a
prefix, Seq a
suffix) <- Int -> Seq a -> (Seq a, Seq a)
forall a. Int -> Seq a -> (Seq a, Seq a)
Sequence.splitAt Int
i Seq a
b -> (Seq a
prefix, Seq a
suffix, s
s')
where g :: a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g a
x (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Seq a -> Maybe s
f s
s (a -> Seq a
forall a. a -> Seq a
Sequence.singleton a
x) = let i' :: Int
i' = Int -> Int
forall a. Enum a => a -> a
succ Int
i :: Int in Int -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq Int
i' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
spanMaybe' :: forall s.
s -> (s -> Seq a -> Maybe s) -> Seq a -> (Seq a, Seq a, s)
spanMaybe' s
s0 s -> Seq a -> Maybe s
f Seq a
b = case (a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s))
-> ((Int, s) -> (Int, s)) -> Seq a -> (Int, s) -> (Int, s)
forall a b. (a -> b -> b) -> b -> Seq a -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Foldable.foldr a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g (Int, s) -> (Int, s)
forall a. a -> a
id Seq a
b (Int
0, s
s0)
of (Int
i, s
s') | (Seq a
prefix, Seq a
suffix) <- Int -> Seq a -> (Seq a, Seq a)
forall a. Int -> Seq a -> (Seq a, Seq a)
Sequence.splitAt Int
i Seq a
b -> (Seq a
prefix, Seq a
suffix, s
s')
where g :: a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g a
x (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Seq a -> Maybe s
f s
s (a -> Seq a
forall a. a -> Seq a
Sequence.singleton a
x) = let i' :: Int
i' = Int -> Int
forall a. Enum a => a -> a
succ Int
i :: Int in Int -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq Int
i' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ s -> (Int, s) -> (Int, s)
forall a b. a -> b -> b
seq s
s' ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
splitAt :: Int -> Seq a -> (Seq a, Seq a)
splitAt = Int -> Seq a -> (Seq a, Seq a)
forall a. Int -> Seq a -> (Seq a, Seq a)
Sequence.splitAt
drop :: Int -> Seq a -> Seq a
drop = Int -> Seq a -> Seq a
forall a. Int -> Seq a -> Seq a
Sequence.drop
take :: Int -> Seq a -> Seq a
take = Int -> Seq a -> Seq a
forall a. Int -> Seq a -> Seq a
Sequence.take
instance Ord a => FactorialMonoid (Set.Set a) where
splitPrimePrefix :: Set a -> Maybe (Set a, Set a)
splitPrimePrefix = ((a, Set a) -> (Set a, Set a))
-> Maybe (a, Set a) -> Maybe (Set a, Set a)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a, Set a) -> (Set a, Set a)
forall {a} {b}. (a, b) -> (Set a, b)
singularize (Maybe (a, Set a) -> Maybe (Set a, Set a))
-> (Set a -> Maybe (a, Set a)) -> Set a -> Maybe (Set a, Set a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Set a -> Maybe (a, Set a)
forall a. Set a -> Maybe (a, Set a)
Set.minView
where singularize :: (a, b) -> (Set a, b)
singularize (a
min, b
rest) = (a -> Set a
forall a. a -> Set a
Set.singleton a
min, b
rest)
splitPrimeSuffix :: Set a -> Maybe (Set a, Set a)
splitPrimeSuffix = ((a, Set a) -> (Set a, Set a))
-> Maybe (a, Set a) -> Maybe (Set a, Set a)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a, Set a) -> (Set a, Set a)
forall {a} {a}. (a, a) -> (a, Set a)
singularize (Maybe (a, Set a) -> Maybe (Set a, Set a))
-> (Set a -> Maybe (a, Set a)) -> Set a -> Maybe (Set a, Set a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Set a -> Maybe (a, Set a)
forall a. Set a -> Maybe (a, Set a)
Set.maxView
where singularize :: (a, a) -> (a, Set a)
singularize (a
max, a
rest) = (a
rest, a -> Set a
forall a. a -> Set a
Set.singleton a
max)
instance FactorialMonoid (Vector.Vector a) where
splitPrimePrefix :: Vector a -> Maybe (Vector a, Vector a)
splitPrimePrefix Vector a
x = if Vector a -> Bool
forall a. Vector a -> Bool
Vector.null Vector a
x then Maybe (Vector a, Vector a)
forall a. Maybe a
Nothing else (Vector a, Vector a) -> Maybe (Vector a, Vector a)
forall a. a -> Maybe a
Just (Int -> Vector a -> (Vector a, Vector a)
forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt Int
1 Vector a
x)
splitPrimeSuffix :: Vector a -> Maybe (Vector a, Vector a)
splitPrimeSuffix Vector a
x = if Vector a -> Bool
forall a. Vector a -> Bool
Vector.null Vector a
x then Maybe (Vector a, Vector a)
forall a. Maybe a
Nothing else (Vector a, Vector a) -> Maybe (Vector a, Vector a)
forall a. a -> Maybe a
Just (Int -> Vector a -> (Vector a, Vector a)
forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt (Vector a -> Int
forall a. Vector a -> Int
Vector.length Vector a
x Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Vector a
x)
inits :: Vector a -> [Vector a]
inits Vector a
x0 = Vector a -> [Vector a] -> [Vector a]
forall {a}. Vector a -> [Vector a] -> [Vector a]
initsWith Vector a
x0 []
where initsWith :: Vector a -> [Vector a] -> [Vector a]
initsWith Vector a
x [Vector a]
rest | Vector a -> Bool
forall a. Vector a -> Bool
Vector.null Vector a
x = Vector a
xVector a -> [Vector a] -> [Vector a]
forall a. a -> [a] -> [a]
:[Vector a]
rest
| Bool
otherwise = Vector a -> [Vector a] -> [Vector a]
initsWith (Vector a -> Vector a
forall a. Vector a -> Vector a
Vector.unsafeInit Vector a
x) (Vector a
xVector a -> [Vector a] -> [Vector a]
forall a. a -> [a] -> [a]
:[Vector a]
rest)
tails :: Vector a -> [Vector a]
tails Vector a
x = Vector a
x Vector a -> [Vector a] -> [Vector a]
forall a. a -> [a] -> [a]
: if Vector a -> Bool
forall a. Vector a -> Bool
Vector.null Vector a
x then [] else Vector a -> [Vector a]
forall m. FactorialMonoid m => m -> [m]
tails (Vector a -> Vector a
forall a. Vector a -> Vector a
Vector.unsafeTail Vector a
x)
break :: (Vector a -> Bool) -> Vector a -> (Vector a, Vector a)
break Vector a -> Bool
f = (a -> Bool) -> Vector a -> (Vector a, Vector a)
forall a. (a -> Bool) -> Vector a -> (Vector a, Vector a)
Vector.break (Vector a -> Bool
f (Vector a -> Bool) -> (a -> Vector a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Vector a
forall a. a -> Vector a
Vector.singleton)
span :: (Vector a -> Bool) -> Vector a -> (Vector a, Vector a)
span Vector a -> Bool
f = (a -> Bool) -> Vector a -> (Vector a, Vector a)
forall a. (a -> Bool) -> Vector a -> (Vector a, Vector a)
Vector.span (Vector a -> Bool
f (Vector a -> Bool) -> (a -> Vector a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Vector a
forall a. a -> Vector a
Vector.singleton)
dropWhile :: (Vector a -> Bool) -> Vector a -> Vector a
dropWhile Vector a -> Bool
f = (a -> Bool) -> Vector a -> Vector a
forall a. (a -> Bool) -> Vector a -> Vector a
Vector.dropWhile (Vector a -> Bool
f (Vector a -> Bool) -> (a -> Vector a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Vector a
forall a. a -> Vector a
Vector.singleton)
takeWhile :: (Vector a -> Bool) -> Vector a -> Vector a
takeWhile Vector a -> Bool
f = (a -> Bool) -> Vector a -> Vector a
forall a. (a -> Bool) -> Vector a -> Vector a
Vector.takeWhile (Vector a -> Bool
f (Vector a -> Bool) -> (a -> Vector a) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Vector a
forall a. a -> Vector a
Vector.singleton)
spanMaybe :: forall s.
s
-> (s -> Vector a -> Maybe s)
-> Vector a
-> (Vector a, Vector a, s)
spanMaybe s
s0 s -> Vector a -> Maybe s
f Vector a
v = case (Int -> a -> (s -> Either s (Int, s)) -> s -> Either s (Int, s))
-> (s -> Either s (Int, s)) -> Vector a -> s -> Either s (Int, s)
forall a b. (Int -> a -> b -> b) -> b -> Vector a -> b
Vector.ifoldr Int -> a -> (s -> Either s (Int, s)) -> s -> Either s (Int, s)
forall {a} {a}.
a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g s -> Either s (Int, s)
forall a b. a -> Either a b
Left Vector a
v s
s0
of Left s
s' -> (Vector a
v, Vector a
forall a. Vector a
Vector.empty, s
s')
Right (Int
i, s
s') | (Vector a
prefix, Vector a
suffix) <- Int -> Vector a -> (Vector a, Vector a)
forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt Int
i Vector a
v -> (Vector a
prefix, Vector a
suffix, s
s')
where g :: a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g a
i a
x s -> Either a (a, s)
cont s
s | Just s
s' <- s -> Vector a -> Maybe s
f s
s (a -> Vector a
forall a. a -> Vector a
Vector.singleton a
x) = s -> Either a (a, s)
cont s
s'
| Bool
otherwise = (a, s) -> Either a (a, s)
forall a b. b -> Either a b
Right (a
i, s
s)
spanMaybe' :: forall s.
s
-> (s -> Vector a -> Maybe s)
-> Vector a
-> (Vector a, Vector a, s)
spanMaybe' s
s0 s -> Vector a -> Maybe s
f Vector a
v = case (Int -> a -> (s -> Either s (Int, s)) -> s -> Either s (Int, s))
-> (s -> Either s (Int, s)) -> Vector a -> s -> Either s (Int, s)
forall a b. (Int -> a -> b -> b) -> b -> Vector a -> b
Vector.ifoldr' Int -> a -> (s -> Either s (Int, s)) -> s -> Either s (Int, s)
forall {a} {a}.
a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g s -> Either s (Int, s)
forall a b. a -> Either a b
Left Vector a
v s
s0
of Left s
s' -> (Vector a
v, Vector a
forall a. Vector a
Vector.empty, s
s')
Right (Int
i, s
s') | (Vector a
prefix, Vector a
suffix) <- Int -> Vector a -> (Vector a, Vector a)
forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt Int
i Vector a
v -> (Vector a
prefix, Vector a
suffix, s
s')
where g :: a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g a
i a
x s -> Either a (a, s)
cont s
s | Just s
s' <- s -> Vector a -> Maybe s
f s
s (a -> Vector a
forall a. a -> Vector a
Vector.singleton a
x) = s -> Either a (a, s) -> Either a (a, s)
forall a b. a -> b -> b
seq s
s' (s -> Either a (a, s)
cont s
s')
| Bool
otherwise = (a, s) -> Either a (a, s)
forall a b. b -> Either a b
Right (a
i, s
s)
splitAt :: Int -> Vector a -> (Vector a, Vector a)
splitAt = Int -> Vector a -> (Vector a, Vector a)
forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt
drop :: Int -> Vector a -> Vector a
drop = Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
Vector.drop
take :: Int -> Vector a -> Vector a
take = Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
Vector.take