{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ {-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.MultiSet -- Copyright : (c) Twan van Laarhoven 2008 -- License : BSD-style -- Maintainer : libraries@haskell.org -- Stability : provisional -- Portability : portable -- -- An efficient implementation of multisets, also sometimes called bags. -- -- A multiset is like a set, but it can contain multiple copies of the same element. -- Unless otherwise specified all insert and remove opertions affect only a single copy of an element. -- For example the minimal element before and after @deleteMin@ could be the same, only with one less occurrence. -- -- Since many function names (but not the type name) clash with -- "Prelude" names, this module is usually imported @qualified@, e.g. -- -- > import Data.MultiSet (MultiSet) -- > import qualified Data.MultiSet as MultiSet -- -- The implementation of 'MultiSet' is based on the "Data.Map" module. -- -- Note that the implementation is /left-biased/ -- the elements of a -- first argument are always preferred to the second, for example in -- 'union' or 'insert'. Of course, left-biasing can only be observed -- when equality is an equivalence relation instead of structural -- equality. -- -- In the complexity of functions /n/ refers to the number of distinct elements, -- /t/ is the total number of elements. ----------------------------------------------------------------------------- module Data.MultiSet ( -- * MultiSet type MultiSet, Occur -- * Operators , (\\) -- * Query , null , size , distinctSize , member , notMember , occur , isSubsetOf , isProperSubsetOf -- * Construction , empty , singleton , insert , insertMany , delete , deleteMany , deleteAll -- * Combine , union, unions , maxUnion , difference , intersection -- * Filter , filter , partition , split , splitOccur -- * Map , map , mapMonotonic , mapMaybe , mapEither , concatMap , unionsMap -- * Monadic , bind , join -- * Fold , fold , foldOccur -- * Min\/Max , findMin , findMax , deleteMin , deleteMax , deleteMinAll , deleteMaxAll , deleteFindMin , deleteFindMax , maxView , minView -- * Conversion -- ** List , elems , distinctElems , toList , fromList -- ** Ordered list , toAscList , fromAscList , fromDistinctAscList -- ** Occurrence lists , toOccurList , toAscOccurList , fromOccurList , fromAscOccurList , fromDistinctAscOccurList -- ** Map , toMap , fromMap , fromOccurMap -- ** Set , toSet , fromSet -- * Debugging , showTree , showTreeWith , valid ) where import Prelude hiding (filter,foldr,null,map,concatMap) #if __GLASGOW_HASKELL__ < 710 import Data.Monoid (Monoid(..)) #endif #if MIN_VERSION_base(4,9,0) import qualified Data.List.NonEmpty (toList) import Data.Semigroup (Semigroup(..)) #if !MIN_VERSION_base(4,11,0) import Data.Semigroup (stimesMonoid) #endif #endif import Data.Typeable () import qualified Data.Foldable as Foldable import Data.Map.Strict (Map) import Data.Set (Set) #if MIN_VERSION_containers(0,5,11) import qualified Data.Map.Strict as Map hiding (showTreeWith) import qualified Data.Map.Internal.Debug as Map (showTreeWith) #else import qualified Data.Map.Strict as Map #endif import qualified Data.Set as Set import qualified Data.List as List import Control.DeepSeq (NFData(..)) {- -- just for testing import QuickCheck import List (nub,sort) import qualified List -} import Data.Typeable #if __GLASGOW_HASKELL__ import Text.Read import Data.Data (Data(..), mkNoRepType) #endif {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} infixl 9 \\ -- -- | /O(n+m)/. See 'difference'. (\\) :: Ord a => MultiSet a -> MultiSet a -> MultiSet a m1 \\ m2 = difference m1 m2 {-------------------------------------------------------------------- The data type --------------------------------------------------------------------} -- | A multiset of values @a@. -- The same value can occur multiple times. newtype MultiSet a = MS { unMS :: Map a Occur } -- invariant: all values in the map are >= 1 -- | The number of occurrences of an element type Occur = Int instance Ord a => Monoid (MultiSet a) where mempty = empty mappend = union mconcat = unions #if MIN_VERSION_base(4,9,0) instance Ord a => Semigroup (MultiSet a) where (<>) = union sconcat = unions . Data.List.NonEmpty.toList stimes n ms@(MS m) | n <= 0 = empty | n == 1 = ms | otherwise = MS $ Map.map (* fromIntegral n) m #endif -- | Note that 'elem' is slower than 'member'. instance Foldable.Foldable MultiSet where foldr = Data.MultiSet.foldr foldl f z = Map.foldlWithKey repF z . unMS where repF acc x 1 = f acc x repF acc x n = repF (f acc x) x (n - 1) foldr1 f = foldr1 f . toList foldl1 f = foldl1 f . toList #if MIN_VERSION_base(4,11,0) fold = Map.foldMapWithKey (\x n -> stimes n x) . unMS foldMap f = Map.foldMapWithKey (\x n -> stimes n (f x)) . unMS #elif MIN_VERSION_base(4,9,0) fold = Map.foldMapWithKey (\x n -> stimesMonoid n x) . unMS foldMap f = Map.foldMapWithKey (\x n -> stimesMonoid n (f x)) . unMS #endif #if MIN_VERSION_base(4,6,0) foldr' f z = Map.foldrWithKey' repF z . unMS where repF x 1 !acc = f x acc repF x n !acc = repF x (n - 1) (f x acc) foldl' f z = Map.foldlWithKey' repF z . unMS where repF !acc x 1 = f acc x repF !acc x n = repF (f acc x) x (n - 1) #endif #if MIN_VERSION_base(4,8,0) toList = toList null = null length = size elem x = elem x . distinctElems maximum = findMax minimum = findMin sum = Map.foldlWithKey' (\s x n -> s + (x * fromIntegral n)) 0 . unMS product = Map.foldlWithKey' (\p x n -> p * (x ^ n)) 1 . unMS #endif instance NFData a => NFData (MultiSet a) where rnf = rnf . unMS #if __GLASGOW_HASKELL__ {-------------------------------------------------------------------- A Data instance --------------------------------------------------------------------} -- This instance preserves data abstraction at the cost of inefficiency. -- We omit reflection services for the sake of data abstraction. instance (Data a, Ord a) => Data (MultiSet a) where gfoldl f z set = z fromList `f` (toList set) toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" dataTypeOf _ = mkNoRepType "Data.MultiSet.MultiSet" dataCast1 f = gcast1 f #endif {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(1)/. Is this the empty multiset? null :: MultiSet a -> Bool null = Map.null . unMS -- | /O(n)/. The number of elements in the multiset. size :: MultiSet a -> Occur size = Map.foldl' (+) 0 . unMS -- | /O(1)/. The number of distinct elements in the multiset. distinctSize :: MultiSet a -> Occur distinctSize = Map.size . unMS -- | /O(log n)/. Is the element in the multiset? member :: Ord a => a -> MultiSet a -> Bool member x = Map.member x . unMS -- | /O(log n)/. Is the element not in the multiset? notMember :: Ord a => a -> MultiSet a -> Bool notMember x = not . member x -- | /O(log n)/. The number of occurrences of an element in a multiset. occur :: Ord a => a -> MultiSet a -> Occur occur x = Map.findWithDefault 0 x . unMS {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. The empty mutli set. empty :: MultiSet a empty = MS Map.empty -- | /O(1)/. Create a singleton mutli set. singleton :: a -> MultiSet a singleton x = MS (Map.singleton x 1) {-------------------------------------------------------------------- Insertion, Deletion --------------------------------------------------------------------} -- | /O(log n)/. Insert an element in a multiset. insert :: Ord a => a -> MultiSet a -> MultiSet a insert x = MS . Map.insertWith (+) x 1 . unMS -- | /O(log n)/. Insert an element in a multiset a given number of times. -- -- Negative numbers remove occurrences of the given element. insertMany :: Ord a => a -> Occur -> MultiSet a -> MultiSet a insertMany x n | n < 0 = MS . Map.update (deleteN (negate n)) x . unMS | n == 0 = id | otherwise = MS . Map.insertWith (+) x n . unMS -- | /O(log n)/. Delete a single element from a multiset. delete :: Ord a => a -> MultiSet a -> MultiSet a delete x = MS . Map.update (deleteN 1) x . unMS -- | /O(log n)/. Delete an element from a multiset a given number of times. -- -- Negative numbers add occurrences of the given element. deleteMany :: Ord a => a -> Occur -> MultiSet a -> MultiSet a deleteMany x n = insertMany x (negate n) -- | /O(log n)/. Delete all occurrences of an element from a multiset. deleteAll :: Ord a => a -> MultiSet a -> MultiSet a deleteAll x = MS . Map.delete x . unMS deleteN :: Occur -> Occur -> Maybe Occur deleteN n m | m <= n = Nothing | otherwise = Just (m - n) {-------------------------------------------------------------------- Subset --------------------------------------------------------------------} -- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal). isProperSubsetOf :: Ord a => MultiSet a -> MultiSet a -> Bool isProperSubsetOf (MS m1) (MS m2) = Map.isProperSubmapOfBy (<=) m1 m2 -- | /O(n+m)/. Is this a subset? -- @(s1 \`isSubsetOf\` s2)@ tells whether @s1@ is a subset of @s2@. isSubsetOf :: Ord a => MultiSet a -> MultiSet a -> Bool isSubsetOf (MS m1) (MS m2) = Map.isSubmapOfBy (<=) m1 m2 {-------------------------------------------------------------------- Minimal, Maximal --------------------------------------------------------------------} -- | /O(log n)/. The minimal element of a multiset. findMin :: MultiSet a -> a findMin = fst . Map.findMin . unMS -- | /O(log n)/. The maximal element of a multiset. findMax :: MultiSet a -> a findMax = fst . Map.findMax . unMS -- | /O(log n)/. Delete the minimal element. deleteMin :: MultiSet a -> MultiSet a deleteMin = MS . Map.updateMin (deleteN 1) . unMS -- | /O(log n)/. Delete the maximal element. deleteMax :: MultiSet a -> MultiSet a deleteMax = MS . Map.updateMax (deleteN 1) . unMS -- | /O(log n)/. Delete all occurrences of the minimal element. deleteMinAll :: MultiSet a -> MultiSet a deleteMinAll = MS . Map.deleteMin . unMS -- | /O(log n)/. Delete all occurrences of the maximal element. deleteMaxAll :: MultiSet a -> MultiSet a deleteMaxAll = MS . Map.deleteMax . unMS -- | /O(log n)/. Delete and find the minimal element. -- -- > deleteFindMin set = (findMin set, deleteMin set) deleteFindMin :: MultiSet a -> (a, MultiSet a) -- TODO: add this missing function to Data.Map --deleteFindMin = (\((v,_),m) -> (v, MS m)) . Map.updateFindMin (deleteN 1) . unMS deleteFindMin set = (findMin set, deleteMin set) -- | /O(log n)/. Delete and find the maximal element. -- -- > deleteFindMax set = (findMax set, deleteMax set) deleteFindMax :: MultiSet a -> (a,MultiSet a) -- TODO: add this missing function to Data.Map --deleteFindMax = (\((v,_),m) -> (v, MS m)) . Map.updateFindMax (deleteN 1) . unMS deleteFindMax set = (findMax set, deleteMax set) -- | /O(log n)/. Retrieves the minimal element of the multiset, -- and the set with that element removed. -- Returns @Nothing@ when passed an empty multiset. -- -- Examples: -- -- >>> minView $ fromList ['a', 'a', 'b', 'c'] -- Just ('a',fromOccurList [('a',1),('b',1),('c',1)]) minView :: MultiSet a -> Maybe (a, MultiSet a) minView x | null x = Nothing | otherwise = Just (deleteFindMin x) -- | /O(log n)/. Retrieves the maximal element of the multiset, -- and the set with that element removed. -- Returns @Nothing@ when passed an empty multiset. -- -- Examples: -- -- >>> maxView $ fromList ['a', 'a', 'b', 'c'] -- Just ('c',fromOccurList [('a',2),('b',1)]) maxView :: MultiSet a -> Maybe (a, MultiSet a) maxView x | null x = Nothing | otherwise = Just (deleteFindMax x) {-------------------------------------------------------------------- Union, Difference, Intersection --------------------------------------------------------------------} -- | The union of a list of multisets: (@'unions' == 'foldl' 'union' 'empty'@). unions :: Ord a => [MultiSet a] -> MultiSet a unions ts = foldlStrict union empty ts -- | /O(n+m)/. The union of two multisets. The union adds the occurrences together. -- -- The implementation uses the efficient /hedge-union/ algorithm. -- Hedge-union is more efficient on (bigset `union` smallset). union :: Ord a => MultiSet a -> MultiSet a -> MultiSet a union (MS m1) (MS m2) = MS $ Map.unionWith (+) m1 m2 -- | /O(n+m)/. The union of two multisets. -- The number of occurrences of each element in the union is -- the maximum of the number of occurrences in the arguments (instead of the sum). -- -- The implementation uses the efficient /hedge-union/ algorithm. -- Hedge-union is more efficient on (bigset `union` smallset). maxUnion :: Ord a => MultiSet a -> MultiSet a -> MultiSet a maxUnion (MS m1) (MS m2) = MS $ Map.unionWith max m1 m2 -- | /O(n+m)/. Difference of two multisets. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. difference :: Ord a => MultiSet a -> MultiSet a -> MultiSet a difference (MS m1) (MS m2) = MS $ Map.differenceWith (flip deleteN) m1 m2 -- | /O(n+m)/. The intersection of two multisets. -- Elements of the result come from the first multiset, so for example -- -- > import qualified Data.MultiSet as MS -- > data AB = A | B deriving Show -- > instance Ord AB where compare _ _ = EQ -- > instance Eq AB where _ == _ = True -- > main = print (MS.singleton A `MS.intersection` MS.singleton B, -- > MS.singleton B `MS.intersection` MS.singleton A) -- -- prints @(fromList [A],fromList [B])@. intersection :: Ord a => MultiSet a -> MultiSet a -> MultiSet a intersection (MS m1) (MS m2) = MS $ Map.intersectionWith min m1 m2 {-------------------------------------------------------------------- Filter and partition --------------------------------------------------------------------} -- | /O(n)/. Filter all elements that satisfy the predicate. filter :: (a -> Bool) -> MultiSet a -> MultiSet a filter p = MS . Map.filterWithKey (\k _ -> p k) . unMS -- | /O(n)/. Partition the multiset into two multisets, one with all elements that satisfy -- the predicate and one with all elements that don't satisfy the predicate. -- See also 'split'. partition :: (a -> Bool) -> MultiSet a -> (MultiSet a,MultiSet a) partition p = (\(x,y) -> (MS x, MS y)) . Map.partitionWithKey (\k _ -> p k) . unMS {---------------------------------------------------------------------- Map ----------------------------------------------------------------------} -- | /O(n*log n)/. -- @'map' f s@ is the multiset obtained by applying @f@ to each element of @s@. map :: (Ord b) => (a->b) -> MultiSet a -> MultiSet b map f = MS . Map.mapKeysWith (+) f . unMS -- | /O(n)/. -- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is strictly monotonic. -- /The precondition is not checked./ -- Semi-formally, we have: -- -- > and [x < y ==> f x < f y | x <- ls, y <- ls] -- > ==> mapMonotonic f s == map f s -- > where ls = toList s mapMonotonic :: (a->b) -> MultiSet a -> MultiSet b mapMonotonic f = MS . Map.mapKeysMonotonic f . unMS -- | /O(n)/. Map and collect the 'Just' results. mapMaybe :: (Ord b) => (a -> Maybe b) -> MultiSet a -> MultiSet b mapMaybe f = fromOccurList . mapMaybe' . toOccurList where mapMaybe' [] = [] mapMaybe' ((x,n):xs) = case f x of Just x' -> (x',n) : mapMaybe' xs Nothing -> mapMaybe' xs -- | /O(n)/. Map and separate the 'Left' and 'Right' results. mapEither :: (Ord b, Ord c) => (a -> Either b c) -> MultiSet a -> (MultiSet b, MultiSet c) mapEither f = (\(ls,rs) -> (fromOccurList ls, fromOccurList rs)) . mapEither' . toOccurList where mapEither' [] = ([],[]) mapEither' ((x,n):xs) = case f x of Left l -> let (ls,rs) = mapEither' xs in ((l,n):ls, rs) Right r -> let (ls,rs) = mapEither' xs in (ls, (r,n):rs) -- | /O(n)/. Apply a function to each element, and take the union of the results concatMap :: (Ord b) => (a -> [b]) -> MultiSet a -> MultiSet b concatMap f = fromOccurList . Map.foldrWithKey mapF [] . unMS where mapF x occ rest = List.map (\y -> (y,occ)) (f x) ++ rest -- | /O(n)/. Apply a function to each element, and take the union of the results unionsMap :: (Ord b) => (a -> MultiSet b) -> MultiSet a -> MultiSet b unionsMap f = unions . List.map timesF . toOccurList where timesF (ms,1) = f ms timesF (ms,n) = MS . Map.map (*n) . unMS $ f ms -- | /O(n)/. The monad join operation for multisets. join :: Ord a => MultiSet (MultiSet a) -> MultiSet a join = unions . List.map times . toOccurList where times (ms,1) = ms times (ms,n) = MS . Map.map (*n) . unMS $ ms -- | /O(n)/. The monad bind operation, (>>=), for multisets. bind :: (Ord b) => MultiSet a -> (a -> MultiSet b) -> MultiSet b bind = flip unionsMap {-------------------------------------------------------------------- Fold --------------------------------------------------------------------} -- | /O(t)/. Fold over the elements of a multiset in an unspecified order. fold :: (a -> b -> b) -> b -> MultiSet a -> b fold f z s = foldr f z s -- | /O(t)/. Post-order fold. foldr :: (a -> b -> b) -> b -> MultiSet a -> b foldr f z = Map.foldrWithKey repF z . unMS where repF a 1 b = f a b repF a n b = repF a (n - 1) (f a b) -- | /O(n)/. Fold over the elements of a multiset with their occurrences. foldOccur :: (a -> Occur -> b -> b) -> b -> MultiSet a -> b foldOccur f z = Map.foldrWithKey f z . unMS {-------------------------------------------------------------------- List variations --------------------------------------------------------------------} -- | /O(t)/. The elements of a multiset. elems :: MultiSet a -> [a] elems = toList -- | /O(n)/. The distinct elements of a multiset, each element occurs only once in the list. -- -- > distinctElems = map fst . toOccurList distinctElems :: MultiSet a -> [a] distinctElems = Map.keys . unMS {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} -- | /O(t)/. Convert the multiset to a list of elements. toList :: MultiSet a -> [a] toList = toAscList -- | /O(t)/. Convert the multiset to an ascending list of elements. toAscList :: MultiSet a -> [a] toAscList = foldr (:) [] -- | /O(t*log t)/. Create a multiset from a list of elements. fromList :: Ord a => [a] -> MultiSet a fromList xs = fromOccurList $ zip xs (repeat 1) -- | /O(t)/. Build a multiset from an ascending list in linear time. -- /The precondition (input list is ascending) is not checked./ fromAscList :: Eq a => [a] -> MultiSet a fromAscList xs = fromAscOccurList $ zip xs (repeat 1) -- | /O(n)/. Build a multiset from an ascending list of distinct elements in linear time. -- /The precondition (input list is strictly ascending) is not checked./ fromDistinctAscList :: [a] -> MultiSet a fromDistinctAscList xs = fromDistinctAscOccurList $ zip xs (repeat 1) {-------------------------------------------------------------------- Occurrence lists --------------------------------------------------------------------} -- | /O(n)/. Convert the multiset to a list of element\/occurrence pairs. toOccurList :: MultiSet a -> [(a,Occur)] toOccurList = toAscOccurList -- | /O(n)/. Convert the multiset to an ascending list of element\/occurrence pairs. toAscOccurList :: MultiSet a -> [(a,Occur)] toAscOccurList = Map.toAscList . unMS -- | /O(n*log n)/. Create a multiset from a list of element\/occurrence pairs. -- Occurrences must be positive. -- /The precondition (all occurrences > 0) is not checked./ fromOccurList :: Ord a => [(a,Occur)] -> MultiSet a fromOccurList = MS . Map.fromListWith (+) -- | /O(n)/. Build a multiset from an ascending list of element\/occurrence pairs in linear time. -- Occurrences must be positive. -- /The precondition (input list is ascending, all occurrences > 0) is not checked./ fromAscOccurList :: Eq a => [(a,Occur)] -> MultiSet a fromAscOccurList = MS . Map.fromAscListWith (+) -- | /O(n)/. Build a multiset from an ascending list of elements\/occurrence pairs where each elements appears only once. -- Occurrences must be positive. -- /The precondition (input list is strictly ascending, all occurrences > 0) is not checked./ fromDistinctAscOccurList :: [(a,Occur)] -> MultiSet a fromDistinctAscOccurList = MS . Map.fromDistinctAscList {-------------------------------------------------------------------- Map --------------------------------------------------------------------} -- | /O(1)/. Convert a multiset to a 'Map' from elements to number of occurrences. toMap :: MultiSet a -> Map a Occur toMap = unMS -- | /O(n)/. Convert a 'Map' from elements to occurrences to a multiset. fromMap :: Map a Occur -> MultiSet a fromMap = MS . Map.filter (>0) -- | /O(1)/. Convert a 'Map' from elements to occurrences to a multiset. -- Assumes that the 'Map' contains only values larger than zero. -- /The precondition (all elements > 0) is not checked./ fromOccurMap :: Map a Occur -> MultiSet a fromOccurMap = MS {-------------------------------------------------------------------- Set --------------------------------------------------------------------} -- | /O(n)/. Convert a multiset to a 'Set', removing duplicates. toSet :: MultiSet a -> Set a toSet = Map.keysSet . unMS -- | /O(n)/. Convert a 'Set' to a multiset. fromSet :: Set a -> MultiSet a fromSet = fromDistinctAscList . Set.toAscList {-------------------------------------------------------------------- Instances --------------------------------------------------------------------} instance Eq a => Eq (MultiSet a) where m1 == m2 = unMS m1 == unMS m2 instance Ord a => Ord (MultiSet a) where compare s1 s2 = compare (unMS s1) (unMS s2) {- -- compare s1 s2 = compare (toAscList s1) (toAscList s2) -- We want {x,x,y} < {x,y} -- i.e. if the number of occurrences differ, more occurrences come first. -- But also, {x,x} > {x} -- so this does not hold at the end of the list. -- -- To summarize: -- * [(x,2),(y,1)] < [(x,1),(y,1)] -- * [(x,2) ] < [(x,1),(y,1)] -- * [(x,2),(y,1)] > [(x,1) ] -- * [(x,2) ] > [(x,1) ] compare s1 s2 = comp (toAscOccurList s1) (toAscOccurList s2) where comp [] [] = EQ comp [] (_:_) = LT comp (_:_) [] = GT comp ((x,n):xs) ((y,m):ys) = case compare x y of EQ -> case compare n m of EQ -> comp xs ys LT -> case xs of [] -> LT _ -> GT GT -> case ys of [] -> GT _ -> LT other -> other -} instance Show a => Show (MultiSet a) where showsPrec p xs = showParen (p > 10) $ showString "fromOccurList " . shows (toOccurList xs) {-------------------------------------------------------------------- Read --------------------------------------------------------------------} instance (Read a, Ord a) => Read (MultiSet a) where #ifdef __GLASGOW_HASKELL__ readPrec = parens $ prec 10 $ do Ident "fromOccurList" <- lexP xs <- readPrec return (fromOccurList xs) readListPrec = readListPrecDefault #else readsPrec p = readParen (p > 10) $ \ r -> do ("fromOccurList",s) <- lex r (xs,t) <- reads s return (fromOccurList xs,t) #endif {-------------------------------------------------------------------- Typeable/Data --------------------------------------------------------------------} #if __GLASGOW_HASKELL__ < 800 #include "Typeable.h" INSTANCE_TYPEABLE1(MultiSet,multiSetTc,"MultiSet") #endif {-------------------------------------------------------------------- Split --------------------------------------------------------------------} -- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@ -- where all elements in @set1@ are lower than @x@ and all elements in -- @set2@ larger than @x@. @x@ is not found in neither @set1@ nor @set2@. split :: Ord a => a -> MultiSet a -> (MultiSet a,MultiSet a) split a = (\(x,y) -> (MS x, MS y)) . Map.split a . unMS -- | /O(log n)/. Performs a 'split' but also returns the number of -- occurrences of the pivot element in the original set. splitOccur :: Ord a => a -> MultiSet a -> (MultiSet a,Occur,MultiSet a) splitOccur a (MS t) = let (l,m,r) = Map.splitLookup a t in (MS l, maybe 0 id m, MS r) {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} -- TODO : Use foldl' from base? foldlStrict :: (a -> t -> a) -> a -> [t] -> a foldlStrict f z xs = case xs of [] -> z (x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx) {-------------------------------------------------------------------- Debugging --------------------------------------------------------------------} -- | /O(n)/. Show the tree that implements the set. The tree is shown -- in a compressed, hanging format. showTree :: Show a => MultiSet a -> String showTree s = showTreeWith True False s {- | /O(n)/. The expression (@showTreeWith hang wide map@) shows the tree that implements the set. If @hang@ is @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If @wide@ is 'True', an extra wide version is shown. > Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1,1,2,3,4,5] > (1*) 4 > +--(1*) 2 > | +--(2*) 1 > | +--(1*) 3 > +--(1*) 5 > > Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1,1,2,3,4,5] > (1*) 4 > | > +--(1*) 2 > | | > | +--(2*) 1 > | | > | +--(1*) 3 > | > +--(1*) 5 > > Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1,1,2,3,4,5] > +--(1*) 5 > | > (1*) 4 > | > | +--(1*) 3 > | | > +--(1*) 2 > | > +--(2*) 1 -} showTreeWith :: Show a => Bool -> Bool -> MultiSet a -> String showTreeWith hang wide = Map.showTreeWith s hang wide . unMS where s a n = showChar '(' . shows n . showString "*)" . shows a $ "" {-------------------------------------------------------------------- Assertions --------------------------------------------------------------------} -- | /O(n)/. Test if the internal multiset structure is valid. valid :: Ord a => MultiSet a -> Bool valid = Map.valid . unMS {- {-------------------------------------------------------------------- Testing --------------------------------------------------------------------} testTree :: [Int] -> MultiSet Int testTree xs = fromList xs test1 = testTree [1..20] test2 = testTree [30,29..10] test3 = testTree [1,4,6,89,2323,53,43,234,5,79,12,9,24,9,8,423,8,42,4,8,9,3] {-------------------------------------------------------------------- QuickCheck --------------------------------------------------------------------} qcheck prop = check config prop where config = Config { configMaxTest = 500 , configMaxFail = 5000 , configSize = \n -> (div n 2 + 3) , configEvery = \n args -> let s = show n in s ++ [ '\b' | _ <- s ] } {-------------------------------------------------------------------- Arbitrary, reasonably balanced trees --------------------------------------------------------------------} instance (Enum a) => Arbitrary (MultiSet a) where arbitrary = fromMap `fmap` arbitrary {-------------------------------------------------------------------- Valid tree's --------------------------------------------------------------------} forValid :: (Enum a,Show a,Testable b) => (MultiSet a -> b) -> Property forValid f = forAll arbitrary $ \t -> -- classify (balanced t) "balanced" $ classify (size t == 0) "empty" $ classify (size t > 0 && size t <= 10) "small" $ classify (size t > 10 && size t <= 64) "medium" $ classify (size t > 64) "large" $ balanced t ==> f t forValidIntTree :: Testable a => (MultiSet Int -> a) -> Property forValidIntTree f = forValid f forValidUnitTree :: Testable a => (MultiSet Int -> a) -> Property forValidUnitTree f = forValid f prop_Valid = forValidUnitTree $ \t -> valid t {-------------------------------------------------------------------- Single, Insert, Delete --------------------------------------------------------------------} prop_Single :: Int -> Bool prop_Single x = (insert x empty == singleton x) prop_InsertValid :: Int -> Property prop_InsertValid k = forValidUnitTree $ \t -> valid (insert k t) prop_InsertDelete :: Int -> MultiSet Int -> Property prop_InsertDelete k t = not (member k t) ==> delete k (insert k t) == t prop_InsertOne :: Int -> MultiSet Int -> Bool prop_InsertOne x t = (insertMany x 1 empty == singleton x) prop_DeleteValid :: Int -> Property prop_DeleteValid k = forValidUnitTree $ \t -> valid (delete k (insert k t)) {-------------------------------------------------------------------- Balance --------------------------------------------------------------------} prop_Join :: Int -> Property prop_Join x = forValidUnitTree $ \t -> let (l,r) = split x t in valid (join x l r) prop_Merge :: Int -> Property prop_Merge x = forValidUnitTree $ \t -> let (l,r) = split x t in valid (merge l r) {-------------------------------------------------------------------- Union --------------------------------------------------------------------} prop_UnionValid :: Property prop_UnionValid = forValidUnitTree $ \t1 -> forValidUnitTree $ \t2 -> valid (union t1 t2) prop_UnionInsert :: Int -> Set Int -> Bool prop_UnionInsert x t = union t (singleton x) == insert x t prop_UnionAssoc :: Set Int -> Set Int -> Set Int -> Bool prop_UnionAssoc t1 t2 t3 = union t1 (union t2 t3) == union (union t1 t2) t3 prop_UnionComm :: Set Int -> Set Int -> Bool prop_UnionComm t1 t2 = (union t1 t2 == union t2 t1) prop_DiffValid = forValidUnitTree $ \t1 -> forValidUnitTree $ \t2 -> valid (difference t1 t2) prop_Diff :: [Int] -> [Int] -> Bool prop_Diff xs ys = toAscList (difference (fromList xs) (fromList ys)) == List.sort ((List.\\) (nub xs) (nub ys)) prop_IntValid = forValidUnitTree $ \t1 -> forValidUnitTree $ \t2 -> valid (intersection t1 t2) prop_Int :: [Int] -> [Int] -> Bool prop_Int xs ys = toAscList (intersection (fromList xs) (fromList ys)) == List.sort (nub ((List.intersect) (xs) (ys))) {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} prop_Ordered = forAll (choose (5,100)) $ \n -> let xs = [0..n::Int] in fromAscList xs == fromList xs prop_List :: [Int] -> Bool prop_List xs = (sort (nub xs) == toList (fromList xs)) -}