{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__
{-# LANGUAGE DeriveDataTypeable, StandaloneDeriving #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.MultiSet
-- Copyright   :  (c) Twan van Laarhoven 2008
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- An efficient implementation of multisets, also sometimes called bags.
--
-- A multiset is like a set, but it can contain multiple copies of the same element.
-- Unless otherwise specified all insert and remove opertions affect only a single copy of an element.
-- For example the minimal element before and after @deleteMin@ could be the same, only with one less occurrence.
--
-- Since many function names (but not the type name) clash with
-- "Prelude" names, this module is usually imported @qualified@, e.g.
--
-- >  import Data.MultiSet (MultiSet)
-- >  import qualified Data.MultiSet as MultiSet
--
-- The implementation of 'MultiSet' is based on the "Data.Map" module.
--
-- Note that the implementation is /left-biased/ -- the elements of a
-- first argument are always preferred to the second, for example in
-- 'union' or 'insert'.  Of course, left-biasing can only be observed
-- when equality is an equivalence relation instead of structural
-- equality.
--
-- In the complexity of functions /n/ refers to the number of distinct elements,
-- /t/ is the total number of elements.
-----------------------------------------------------------------------------

module Data.MultiSet  (
            -- * MultiSet type
              MultiSet, Occur

            -- * Operators
            , (\\)

            -- * Query
            , null
            , size
            , distinctSize
            , member
            , notMember
            , occur
            , isSubsetOf
            , isProperSubsetOf

            -- * Construction
            , empty
            , singleton
            , insert
            , insertMany
            , delete
            , deleteMany
            , deleteAll

            -- * Combine
            , union, unions
            , maxUnion
            , difference
            , intersection

            -- * Filter
            , filter
            , partition
            , split
            , splitOccur

            -- * Map
            , map
            , mapMonotonic
            , mapMaybe
            , mapEither
            , concatMap
            , unionsMap

            -- * Monadic
            , bind
            , join

            -- * Fold
            , fold
            , foldOccur

            -- * Min\/Max
            , findMin
            , findMax
            , deleteMin
            , deleteMax
            , deleteMinAll
            , deleteMaxAll
            , deleteFindMin
            , deleteFindMax
            , maxView
            , minView

            -- * Conversion

            -- ** List
            , elems
            , distinctElems
            , toList
            , fromList

            -- ** Ordered list
            , toAscList
            , fromAscList
            , fromDistinctAscList

            -- ** Occurrence lists
            , toOccurList
            , toAscOccurList
            , fromOccurList
            , fromAscOccurList
            , fromDistinctAscOccurList

            -- ** Map
            , toMap
            , fromMap
            , fromOccurMap

            -- ** Set
            , toSet
            , fromSet

            -- * Debugging
            , showTree
            , showTreeWith
            , valid
            ) where

import Prelude hiding (filter,foldr,null,map,concatMap)
#if __GLASGOW_HASKELL__ < 710
import Data.Monoid (Monoid(..))
#endif
#if MIN_VERSION_base(4,9,0)
import qualified Data.List.NonEmpty (toList)
import Data.Semigroup (Semigroup(..))
#if !MIN_VERSION_base(4,11,0)
import Data.Semigroup (stimesMonoid)
#endif
#endif
import Data.Typeable ()
import qualified Data.Foldable as Foldable
import Data.Map.Strict (Map)
import Data.Set (Set)
#if MIN_VERSION_containers(0,5,11)
import qualified Data.Map.Strict as Map hiding (showTreeWith)
import qualified Data.Map.Internal.Debug as Map (showTreeWith)
#else
import qualified Data.Map.Strict as Map
#endif
import qualified Data.Set as Set
import qualified Data.List as List
import Control.DeepSeq (NFData(..))

{-
-- just for testing
import QuickCheck 
import List (nub,sort)
import qualified List
-}

import Data.Typeable
#if __GLASGOW_HASKELL__
import Text.Read
import Data.Data (Data(..), mkNoRepType)
#endif

{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}
infixl 9 \\ --

-- | /O(n+m)/. See 'difference'.
(\\) :: Ord a => MultiSet a -> MultiSet a -> MultiSet a
m1 \\ m2 = difference m1 m2

{--------------------------------------------------------------------
  The data type
--------------------------------------------------------------------}

-- | A multiset of values @a@.
--   The same value can occur multiple times.
newtype MultiSet a = MS { unMS :: Map a Occur }
                     -- invariant: all values in the map are >= 1

-- | The number of occurrences of an element
type Occur = Int

instance Ord a => Monoid (MultiSet a) where
    mempty  = empty
    mappend = union
    mconcat = unions

#if MIN_VERSION_base(4,9,0)
instance Ord a => Semigroup (MultiSet a) where
    (<>) = union
    sconcat = unions . Data.List.NonEmpty.toList
    stimes n ms@(MS m)
      | n <= 0    = empty
      | n == 1    = ms
      | otherwise = MS $ Map.map (* fromIntegral n) m
#endif

-- | Note that 'elem' is slower than 'member'.
instance Foldable.Foldable MultiSet where
    foldr = Data.MultiSet.foldr
    foldl f z = Map.foldlWithKey repF z . unMS
      where repF acc x 1 = f acc x
            repF acc x n = repF (f acc x) x (n - 1)
    foldr1 f = foldr1 f . toList
    foldl1 f = foldl1 f . toList

#if MIN_VERSION_base(4,11,0)
    fold = Map.foldMapWithKey (\x n -> stimes n x) . unMS
    foldMap f = Map.foldMapWithKey (\x n -> stimes n (f x)) . unMS
#elif MIN_VERSION_base(4,9,0)
    fold = Map.foldMapWithKey (\x n -> stimesMonoid n x) . unMS
    foldMap f = Map.foldMapWithKey (\x n -> stimesMonoid n (f x)) . unMS
#endif

#if MIN_VERSION_base(4,6,0)
    foldr' f z = Map.foldrWithKey' repF z . unMS
      where repF x 1 !acc = f x acc
            repF x n !acc = repF x (n - 1) (f x acc)
    foldl' f z = Map.foldlWithKey' repF z . unMS
      where repF !acc x 1 = f acc x
            repF !acc x n = repF (f acc x) x (n - 1)
#endif

#if MIN_VERSION_base(4,8,0)
    toList = toList
    null = null
    length = size
    elem x = elem x . distinctElems
    maximum = findMax
    minimum = findMin
    sum = Map.foldlWithKey' (\s x n -> s + (x * fromIntegral n)) 0 . unMS
    product = Map.foldlWithKey' (\p x n -> p * (x ^ n)) 1 . unMS
#endif

instance NFData a => NFData (MultiSet a) where
    rnf = rnf . unMS

#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance  
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We omit reflection services for the sake of data abstraction.

instance (Data a, Ord a) => Data (MultiSet a) where
  gfoldl f z set = z fromList `f` (toList set)
  toConstr _     = error "toConstr"
  gunfold _ _    = error "gunfold"
  dataTypeOf _   = mkNoRepType "Data.MultiSet.MultiSet"
  dataCast1 f    = gcast1 f

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}

-- | /O(1)/. Is this the empty multiset?
null :: MultiSet a -> Bool
null = Map.null . unMS

-- | /O(n)/. The number of elements in the multiset.
size :: MultiSet a -> Occur
size = Map.foldl' (+) 0 . unMS

-- | /O(1)/. The number of distinct elements in the multiset.
distinctSize :: MultiSet a -> Occur
distinctSize = Map.size . unMS

-- | /O(log n)/. Is the element in the multiset?
member :: Ord a => a -> MultiSet a -> Bool
member x = Map.member x . unMS

-- | /O(log n)/. Is the element not in the multiset?
notMember :: Ord a => a -> MultiSet a -> Bool
notMember x = not . member x

-- | /O(log n)/. The number of occurrences of an element in a multiset.
occur :: Ord a => a -> MultiSet a -> Occur
occur x = Map.findWithDefault 0 x . unMS

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}

-- | /O(1)/. The empty mutli set.
empty :: MultiSet a
empty = MS Map.empty

-- | /O(1)/. Create a singleton mutli set.
singleton :: a -> MultiSet a
singleton x = MS (Map.singleton x 1)

{--------------------------------------------------------------------
  Insertion, Deletion
--------------------------------------------------------------------}

-- | /O(log n)/. Insert an element in a multiset.
insert :: Ord a => a -> MultiSet a -> MultiSet a
insert x = MS . Map.insertWith (+) x 1 . unMS

-- | /O(log n)/. Insert an element in a multiset a given number of times.
--
-- Negative numbers remove occurrences of the given element.
insertMany :: Ord a => a -> Occur -> MultiSet a -> MultiSet a
insertMany x n
 | n <  0    = MS . Map.update (deleteN (negate n)) x . unMS
 | n == 0    = id
 | otherwise = MS . Map.insertWith (+) x n . unMS

-- | /O(log n)/. Delete a single element from a multiset.
delete :: Ord a => a -> MultiSet a -> MultiSet a
delete x = MS . Map.update (deleteN 1) x . unMS

-- | /O(log n)/. Delete an element from a multiset a given number of times.
--
-- Negative numbers add occurrences of the given element.
deleteMany :: Ord a => a -> Occur -> MultiSet a -> MultiSet a
deleteMany x n = insertMany x (negate n)

-- | /O(log n)/. Delete all occurrences of an element from a multiset.
deleteAll :: Ord a => a -> MultiSet a -> MultiSet a
deleteAll x = MS . Map.delete x . unMS

deleteN :: Occur -> Occur -> Maybe Occur
deleteN n m
  | m <= n    = Nothing
  | otherwise = Just (m - n)


{--------------------------------------------------------------------
  Subset
--------------------------------------------------------------------}

-- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal).
isProperSubsetOf :: Ord a => MultiSet a -> MultiSet a -> Bool
isProperSubsetOf (MS m1) (MS m2) = Map.isProperSubmapOfBy (<=) m1 m2

-- | /O(n+m)/. Is this a subset?
-- @(s1 \`isSubsetOf\` s2)@ tells whether @s1@ is a subset of @s2@.
isSubsetOf :: Ord a => MultiSet a -> MultiSet a -> Bool
isSubsetOf (MS m1) (MS m2) = Map.isSubmapOfBy (<=) m1 m2

{--------------------------------------------------------------------
  Minimal, Maximal
--------------------------------------------------------------------}

-- | /O(log n)/. The minimal element of a multiset.
findMin :: MultiSet a -> a
findMin = fst . Map.findMin . unMS

-- | /O(log n)/. The maximal element of a multiset.
findMax :: MultiSet a -> a
findMax = fst . Map.findMax . unMS

-- | /O(log n)/. Delete the minimal element.
deleteMin :: MultiSet a -> MultiSet a
deleteMin = MS . Map.updateMin (deleteN 1) . unMS

-- | /O(log n)/. Delete the maximal element.
deleteMax :: MultiSet a -> MultiSet a
deleteMax = MS . Map.updateMax (deleteN 1) . unMS

-- | /O(log n)/. Delete all occurrences of the minimal element.
deleteMinAll :: MultiSet a -> MultiSet a
deleteMinAll = MS . Map.deleteMin . unMS

-- | /O(log n)/. Delete all occurrences of the maximal element.
deleteMaxAll :: MultiSet a -> MultiSet a
deleteMaxAll = MS . Map.deleteMax . unMS

-- | /O(log n)/. Delete and find the minimal element.
-- 
-- > deleteFindMin set = (findMin set, deleteMin set)
deleteFindMin :: MultiSet a -> (a, MultiSet a)
-- TODO: add this missing function to Data.Map
--deleteFindMin = (\((v,_),m) -> (v, MS m)) . Map.updateFindMin (deleteN 1) . unMS
deleteFindMin set = (findMin set, deleteMin set)

-- | /O(log n)/. Delete and find the maximal element.
-- 
-- > deleteFindMax set = (findMax set, deleteMax set)
deleteFindMax :: MultiSet a -> (a,MultiSet a)
-- TODO: add this missing function to Data.Map
--deleteFindMax = (\((v,_),m) -> (v, MS m)) . Map.updateFindMax (deleteN 1) . unMS
deleteFindMax set = (findMax set, deleteMax set)

-- | /O(log n)/. Retrieves the minimal element of the multiset,
--   and the set with that element removed.
--   Returns @Nothing@ when passed an empty multiset.
--
-- Examples:
--
-- >>> minView $ fromList ['a', 'a', 'b', 'c']
-- Just ('a',fromOccurList [('a',1),('b',1),('c',1)])
minView :: MultiSet a -> Maybe (a, MultiSet a)
minView x
  | null x    = Nothing
  | otherwise = Just (deleteFindMin x)

-- | /O(log n)/. Retrieves the maximal element of the multiset,
--   and the set with that element removed.
--   Returns @Nothing@ when passed an empty multiset.
--
-- Examples:
--
-- >>> maxView $ fromList ['a', 'a', 'b', 'c']
-- Just ('c',fromOccurList [('a',2),('b',1)])
maxView :: MultiSet a -> Maybe (a, MultiSet a)
maxView x
  | null x    = Nothing
  | otherwise = Just (deleteFindMax x)

{--------------------------------------------------------------------
  Union, Difference, Intersection
--------------------------------------------------------------------}

-- | The union of a list of multisets: (@'unions' == 'foldl' 'union' 'empty'@).
unions :: Ord a => [MultiSet a] -> MultiSet a
unions ts
  = foldlStrict union empty ts

-- | /O(n+m)/. The union of two multisets. The union adds the occurrences together.
-- 
-- The implementation uses the efficient /hedge-union/ algorithm.
-- Hedge-union is more efficient on (bigset `union` smallset).
union :: Ord a => MultiSet a -> MultiSet a -> MultiSet a
union (MS m1) (MS m2) = MS $ Map.unionWith (+) m1 m2

-- | /O(n+m)/. The union of two multisets.
-- The number of occurrences of each element in the union is
-- the maximum of the number of occurrences in the arguments (instead of the sum).
--
-- The implementation uses the efficient /hedge-union/ algorithm.
-- Hedge-union is more efficient on (bigset `union` smallset).
maxUnion :: Ord a => MultiSet a -> MultiSet a -> MultiSet a
maxUnion (MS m1) (MS m2) = MS $ Map.unionWith max m1 m2

-- | /O(n+m)/. Difference of two multisets. 
-- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/.
difference :: Ord a => MultiSet a -> MultiSet a -> MultiSet a
difference (MS m1) (MS m2) = MS $ Map.differenceWith (flip deleteN) m1 m2

-- | /O(n+m)/. The intersection of two multisets.
-- Elements of the result come from the first multiset, so for example
--
-- > import qualified Data.MultiSet as MS
-- > data AB = A | B deriving Show
-- > instance Ord AB where compare _ _ = EQ
-- > instance Eq AB where _ == _ = True
-- > main = print (MS.singleton A `MS.intersection` MS.singleton B,
-- >               MS.singleton B `MS.intersection` MS.singleton A)
--
-- prints @(fromList [A],fromList [B])@.
intersection :: Ord a => MultiSet a -> MultiSet a -> MultiSet a
intersection (MS m1) (MS m2) = MS $ Map.intersectionWith min m1 m2

{--------------------------------------------------------------------
  Filter and partition
--------------------------------------------------------------------}
-- | /O(n)/. Filter all elements that satisfy the predicate.
filter :: (a -> Bool) -> MultiSet a -> MultiSet a
filter p = MS . Map.filterWithKey (\k _ -> p k) . unMS

-- | /O(n)/. Partition the multiset into two multisets, one with all elements that satisfy
-- the predicate and one with all elements that don't satisfy the predicate.
-- See also 'split'.
partition :: (a -> Bool) -> MultiSet a -> (MultiSet a,MultiSet a)
partition p = (\(x,y) -> (MS x, MS y)) . Map.partitionWithKey (\k _ -> p k) . unMS

{----------------------------------------------------------------------
  Map
----------------------------------------------------------------------}

-- | /O(n*log n)/. 
-- @'map' f s@ is the multiset obtained by applying @f@ to each element of @s@.
map :: (Ord b) => (a->b) -> MultiSet a -> MultiSet b
map f = MS . Map.mapKeysWith (+) f . unMS

-- | /O(n)/.
-- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is strictly monotonic.
-- /The precondition is not checked./
-- Semi-formally, we have:
-- 
-- > and [x < y ==> f x < f y | x <- ls, y <- ls]
-- >                     ==> mapMonotonic f s == map f s
-- >     where ls = toList s
mapMonotonic :: (a->b) -> MultiSet a -> MultiSet b
mapMonotonic f = MS . Map.mapKeysMonotonic f . unMS

-- | /O(n)/. Map and collect the 'Just' results.
mapMaybe :: (Ord b) => (a -> Maybe b) -> MultiSet a -> MultiSet b
mapMaybe f = fromOccurList . mapMaybe' . toOccurList
  where mapMaybe' [] = []
        mapMaybe' ((x,n):xs) = case f x of
           Just x' -> (x',n) : mapMaybe' xs
           Nothing ->          mapMaybe' xs

-- | /O(n)/. Map and separate the 'Left' and 'Right' results.
mapEither :: (Ord b, Ord c) => (a -> Either b c) -> MultiSet a -> (MultiSet b, MultiSet c)
mapEither f = (\(ls,rs) -> (fromOccurList ls, fromOccurList rs)) . mapEither' . toOccurList
  where mapEither' [] = ([],[])
        mapEither' ((x,n):xs) = case f x of
           Left  l -> let (ls,rs) = mapEither' xs in ((l,n):ls, rs)
           Right r -> let (ls,rs) = mapEither' xs in (ls, (r,n):rs)


-- | /O(n)/. Apply a function to each element, and take the union of the results
concatMap :: (Ord b) => (a -> [b]) -> MultiSet a -> MultiSet b
concatMap f = fromOccurList . Map.foldrWithKey mapF [] . unMS
  where mapF x occ rest = List.map (\y -> (y,occ)) (f x) ++ rest

-- | /O(n)/. Apply a function to each element, and take the union of the results
unionsMap :: (Ord b) => (a -> MultiSet b) -> MultiSet a -> MultiSet b
unionsMap f = unions . List.map timesF . toOccurList
  where timesF (ms,1) = f ms
        timesF (ms,n) = MS . Map.map (*n) . unMS $ f ms

-- | /O(n)/. The monad join operation for multisets.
join :: Ord a => MultiSet (MultiSet a) -> MultiSet a
join = unions . List.map times . toOccurList
  where times (ms,1) = ms
        times (ms,n) = MS . Map.map (*n) . unMS $ ms

-- | /O(n)/. The monad bind operation, (>>=), for multisets.
bind :: (Ord b) => MultiSet a -> (a -> MultiSet b) -> MultiSet b
bind = flip unionsMap

{--------------------------------------------------------------------
  Fold
--------------------------------------------------------------------}

-- | /O(t)/. Fold over the elements of a multiset in an unspecified order.
fold :: (a -> b -> b) -> b -> MultiSet a -> b
fold f z s
  = foldr f z s

-- | /O(t)/. Post-order fold.
foldr :: (a -> b -> b) -> b -> MultiSet a -> b
foldr f z = Map.foldrWithKey repF z . unMS
 where repF a 1 b = f a b
       repF a n b = repF a (n - 1) (f a b)

-- | /O(n)/. Fold over the elements of a multiset with their occurrences.
foldOccur :: (a -> Occur -> b -> b) -> b -> MultiSet a -> b
foldOccur f z = Map.foldrWithKey f z . unMS

{--------------------------------------------------------------------
  List variations 
--------------------------------------------------------------------}
-- | /O(t)/. The elements of a multiset.
elems :: MultiSet a -> [a]
elems = toList

-- | /O(n)/. The distinct elements of a multiset, each element occurs only once in the list.
--
-- > distinctElems = map fst . toOccurList
distinctElems :: MultiSet a -> [a]
distinctElems = Map.keys . unMS

{--------------------------------------------------------------------
  Lists 
--------------------------------------------------------------------}
-- | /O(t)/. Convert the multiset to a list of elements.
toList :: MultiSet a -> [a]
toList = toAscList

-- | /O(t)/. Convert the multiset to an ascending list of elements.
toAscList :: MultiSet a -> [a]
toAscList = foldr (:) []

-- | /O(t*log t)/. Create a multiset from a list of elements.
fromList :: Ord a => [a] -> MultiSet a
fromList xs = fromOccurList $ zip xs (repeat 1)

-- | /O(t)/. Build a multiset from an ascending list in linear time.
-- /The precondition (input list is ascending) is not checked./
fromAscList :: Eq a => [a] -> MultiSet a
fromAscList xs = fromAscOccurList $ zip xs (repeat 1)

-- | /O(n)/. Build a multiset from an ascending list of distinct elements in linear time.
-- /The precondition (input list is strictly ascending) is not checked./
fromDistinctAscList :: [a] -> MultiSet a
fromDistinctAscList xs = fromDistinctAscOccurList $ zip xs (repeat 1)

{--------------------------------------------------------------------
  Occurrence lists 
--------------------------------------------------------------------}

-- | /O(n)/. Convert the multiset to a list of element\/occurrence pairs.
toOccurList :: MultiSet a -> [(a,Occur)]
toOccurList = toAscOccurList

-- | /O(n)/. Convert the multiset to an ascending list of element\/occurrence pairs.
toAscOccurList :: MultiSet a -> [(a,Occur)]
toAscOccurList = Map.toAscList . unMS


-- | /O(n*log n)/. Create a multiset from a list of element\/occurrence pairs.
-- Occurrences must be positive.
-- /The precondition (all occurrences > 0) is not checked./
fromOccurList :: Ord a => [(a,Occur)] -> MultiSet a
fromOccurList = MS . Map.fromListWith (+)

-- | /O(n)/. Build a multiset from an ascending list of element\/occurrence pairs in linear time.
-- Occurrences must be positive.
-- /The precondition (input list is ascending, all occurrences > 0) is not checked./
fromAscOccurList :: Eq a => [(a,Occur)] -> MultiSet a
fromAscOccurList = MS . Map.fromAscListWith (+)

-- | /O(n)/. Build a multiset from an ascending list of elements\/occurrence pairs where each elements appears only once.
-- Occurrences must be positive.
-- /The precondition (input list is strictly ascending, all occurrences > 0) is not checked./
fromDistinctAscOccurList :: [(a,Occur)] -> MultiSet a
fromDistinctAscOccurList = MS . Map.fromDistinctAscList

{--------------------------------------------------------------------
  Map
--------------------------------------------------------------------}

-- | /O(1)/. Convert a multiset to a 'Map' from elements to number of occurrences.
toMap :: MultiSet a -> Map a Occur
toMap = unMS

-- | /O(n)/. Convert a 'Map' from elements to occurrences to a multiset.
fromMap :: Map a Occur -> MultiSet a
fromMap = MS . Map.filter (>0)

-- | /O(1)/. Convert a 'Map' from elements to occurrences to a multiset.
-- Assumes that the 'Map' contains only values larger than zero.
-- /The precondition (all elements > 0) is not checked./
fromOccurMap :: Map a Occur -> MultiSet a
fromOccurMap = MS

{--------------------------------------------------------------------
  Set
--------------------------------------------------------------------}

-- | /O(n)/. Convert a multiset to a 'Set', removing duplicates.
toSet :: MultiSet a -> Set a
toSet = Map.keysSet . unMS

-- | /O(n)/. Convert a 'Set' to a multiset.
fromSet :: Set a -> MultiSet a
fromSet = fromDistinctAscList . Set.toAscList

{--------------------------------------------------------------------
  Instances 
--------------------------------------------------------------------}

instance Eq a => Eq (MultiSet a) where
  m1 == m2  =  unMS m1 == unMS m2

instance Ord a => Ord (MultiSet a) where
  compare s1 s2 = compare (unMS s1) (unMS s2)
  {-
  -- compare s1 s2 = compare (toAscList s1) (toAscList s2) 
  -- We want {x,x,y} < {x,y}
  -- i.e. if the number of occurrences differ, more occurrences come first.
  -- But also, {x,x} > {x}
  -- so this does not hold at the end of the list.
  --
  -- To summarize:
  --    * [(x,2),(y,1)] < [(x,1),(y,1)]
  --    * [(x,2)      ] < [(x,1),(y,1)]
  --    * [(x,2),(y,1)] > [(x,1)      ]
  --    * [(x,2)      ] > [(x,1)      ]
  compare s1 s2 = comp (toAscOccurList s1) (toAscOccurList s2) 
    where comp []         []     = EQ
          comp []         (_:_)  = LT
          comp (_:_)      []     = GT
          comp ((x,n):xs) ((y,m):ys)
             = case compare x y of
                 EQ    -> case compare n m of
                            EQ -> comp xs ys
                            LT -> case xs of
                                    [] -> LT
                                    _  -> GT
                            GT -> case ys of
                                    [] -> GT
                                    _  -> LT
                 other -> other
  -}

instance Show a => Show (MultiSet a) where
  showsPrec p xs = showParen (p > 10) $
    showString "fromOccurList " . shows (toOccurList xs)

{--------------------------------------------------------------------
  Read
--------------------------------------------------------------------}
instance (Read a, Ord a) => Read (MultiSet a) where
#ifdef __GLASGOW_HASKELL__
  readPrec = parens $ prec 10 $ do
    Ident "fromOccurList" <- lexP
    xs <- readPrec
    return (fromOccurList xs)

  readListPrec = readListPrecDefault
#else
  readsPrec p = readParen (p > 10) $ \ r -> do
    ("fromOccurList",s) <- lex r
    (xs,t) <- reads s
    return (fromOccurList xs,t)
#endif

{--------------------------------------------------------------------
  Typeable/Data
--------------------------------------------------------------------}

#if __GLASGOW_HASKELL__ < 800
#include "Typeable.h"
INSTANCE_TYPEABLE1(MultiSet,multiSetTc,"MultiSet")
#endif

{--------------------------------------------------------------------
  Split
--------------------------------------------------------------------}

-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@
-- where all elements in @set1@ are lower than @x@ and all elements in
-- @set2@ larger than @x@. @x@ is not found in neither @set1@ nor @set2@.
split :: Ord a => a -> MultiSet a -> (MultiSet a,MultiSet a)
split a = (\(x,y) -> (MS x, MS y)) . Map.split a . unMS

-- | /O(log n)/. Performs a 'split' but also returns the number of
-- occurrences of the pivot element in the original set.
splitOccur :: Ord a => a -> MultiSet a -> (MultiSet a,Occur,MultiSet a)
splitOccur a (MS t) = let (l,m,r) = Map.splitLookup a t in
     (MS l, maybe 0 id m, MS r)

{--------------------------------------------------------------------
  Utilities
--------------------------------------------------------------------}

-- TODO : Use foldl' from base?
foldlStrict :: (a -> t -> a) -> a -> [t] -> a
foldlStrict f z xs
  = case xs of
      []     -> z
      (x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx)


{--------------------------------------------------------------------
  Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the set. The tree is shown
-- in a compressed, hanging format.
showTree :: Show a => MultiSet a -> String
showTree s = showTreeWith True False s


{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows
 the tree that implements the set. If @hang@ is
 @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
 @wide@ is 'True', an extra wide version is shown.

> Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1,1,2,3,4,5]
> (1*) 4
> +--(1*) 2
> |  +--(2*) 1
> |  +--(1*) 3
> +--(1*) 5
> 
> Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1,1,2,3,4,5]
> (1*) 4
> |
> +--(1*) 2
> |  |
> |  +--(2*) 1
> |  |
> |  +--(1*) 3
> |
> +--(1*) 5
> 
> Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1,1,2,3,4,5]
> +--(1*) 5
> |
> (1*) 4
> |
> |  +--(1*) 3
> |  |
> +--(1*) 2
>    |
>    +--(2*) 1

-}
showTreeWith :: Show a => Bool -> Bool -> MultiSet a -> String
showTreeWith hang wide = Map.showTreeWith s hang wide . unMS
  where s a n = showChar '(' . shows n . showString "*)" . shows a $ ""

{--------------------------------------------------------------------
  Assertions
--------------------------------------------------------------------}
-- | /O(n)/. Test if the internal multiset structure is valid.
valid :: Ord a => MultiSet a -> Bool
valid = Map.valid . unMS

{-
{--------------------------------------------------------------------
  Testing
--------------------------------------------------------------------}
testTree :: [Int] -> MultiSet Int
testTree xs   = fromList xs
test1 = testTree [1..20]
test2 = testTree [30,29..10]
test3 = testTree [1,4,6,89,2323,53,43,234,5,79,12,9,24,9,8,423,8,42,4,8,9,3]

{--------------------------------------------------------------------
  QuickCheck
--------------------------------------------------------------------}
qcheck prop
  = check config prop
  where
    config = Config
      { configMaxTest = 500
      , configMaxFail = 5000
      , configSize    = \n -> (div n 2 + 3)
      , configEvery   = \n args -> let s = show n in s ++ [ '\b' | _ <- s ]
      }


{--------------------------------------------------------------------
  Arbitrary, reasonably balanced trees
--------------------------------------------------------------------}
instance (Enum a) => Arbitrary (MultiSet a) where
  arbitrary = fromMap `fmap` arbitrary

{--------------------------------------------------------------------
  Valid tree's
--------------------------------------------------------------------}
forValid :: (Enum a,Show a,Testable b) => (MultiSet a -> b) -> Property
forValid f
  = forAll arbitrary $ \t -> 
--    classify (balanced t) "balanced" $
    classify (size t == 0) "empty" $
    classify (size t > 0  && size t <= 10) "small" $
    classify (size t > 10 && size t <= 64) "medium" $
    classify (size t > 64) "large" $
    balanced t ==> f t

forValidIntTree :: Testable a => (MultiSet Int -> a) -> Property
forValidIntTree f
  = forValid f

forValidUnitTree :: Testable a => (MultiSet Int -> a) -> Property
forValidUnitTree f
  = forValid f


prop_Valid 
  = forValidUnitTree $ \t -> valid t

{--------------------------------------------------------------------
  Single, Insert, Delete
--------------------------------------------------------------------}
prop_Single :: Int -> Bool
prop_Single x
  = (insert x empty == singleton x)

prop_InsertValid :: Int -> Property
prop_InsertValid k
  = forValidUnitTree $ \t -> valid (insert k t)

prop_InsertDelete :: Int -> MultiSet Int -> Property
prop_InsertDelete k t
  = not (member k t) ==> delete k (insert k t) == t

prop_InsertOne :: Int -> MultiSet Int -> Bool
prop_InsertOne x t
  = (insertMany x 1 empty == singleton x)

prop_DeleteValid :: Int -> Property
prop_DeleteValid k
  = forValidUnitTree $ \t -> 
    valid (delete k (insert k t))

{--------------------------------------------------------------------
  Balance
--------------------------------------------------------------------}
prop_Join :: Int -> Property 
prop_Join x
  = forValidUnitTree $ \t ->
    let (l,r) = split x t
    in valid (join x l r)

prop_Merge :: Int -> Property 
prop_Merge x
  = forValidUnitTree $ \t ->
    let (l,r) = split x t
    in valid (merge l r)


{--------------------------------------------------------------------
  Union
--------------------------------------------------------------------}
prop_UnionValid :: Property
prop_UnionValid
  = forValidUnitTree $ \t1 ->
    forValidUnitTree $ \t2 ->
    valid (union t1 t2)

prop_UnionInsert :: Int -> Set Int -> Bool
prop_UnionInsert x t
  = union t (singleton x) == insert x t

prop_UnionAssoc :: Set Int -> Set Int -> Set Int -> Bool
prop_UnionAssoc t1 t2 t3
  = union t1 (union t2 t3) == union (union t1 t2) t3

prop_UnionComm :: Set Int -> Set Int -> Bool
prop_UnionComm t1 t2
  = (union t1 t2 == union t2 t1)


prop_DiffValid
  = forValidUnitTree $ \t1 ->
    forValidUnitTree $ \t2 ->
    valid (difference t1 t2)

prop_Diff :: [Int] -> [Int] -> Bool
prop_Diff xs ys
  =  toAscList (difference (fromList xs) (fromList ys))
    == List.sort ((List.\\) (nub xs)  (nub ys))

prop_IntValid
  = forValidUnitTree $ \t1 ->
    forValidUnitTree $ \t2 ->
    valid (intersection t1 t2)

prop_Int :: [Int] -> [Int] -> Bool
prop_Int xs ys
  =  toAscList (intersection (fromList xs) (fromList ys))
    == List.sort (nub ((List.intersect) (xs)  (ys)))

{--------------------------------------------------------------------
  Lists
--------------------------------------------------------------------}
prop_Ordered
  = forAll (choose (5,100)) $ \n ->
    let xs = [0..n::Int]
    in fromAscList xs == fromList xs

prop_List :: [Int] -> Bool
prop_List xs
  = (sort (nub xs) == toList (fromList xs))
-}