numeric-prelude-0.4.2: An experimental alternative hierarchy of numeric type classes

Safe HaskellSafe-Inferred
LanguageHaskell98

NumericPrelude.Base

Description

The only point of this module is to reexport items that we want from the standard Prelude.

Synopsis

Documentation

(!!) :: [a] -> Int -> a infixl 9

List index (subscript) operator, starting from 0. It is an instance of the more general genericIndex, which takes an index of any integral type.

($) :: (a -> b) -> a -> b infixr 0

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

    f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

($!) :: (a -> b) -> a -> b infixr 0

Strict (call-by-value) application, defined in terms of seq.

(&&) :: Bool -> Bool -> Bool infixr 3

Boolean "and"

(++) :: [a] -> [a] -> [a] infixr 5

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9

Function composition.

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1

Same as >>=, but with the arguments interchanged.

data Bool :: *

Constructors

False 
True 

Instances

Bounded Bool 
Enum Bool 
Eq Bool 
Ord Bool 
Read Bool 
Show Bool 
Ix Bool 
Generic Bool 
Testable Bool 
Arbitrary Bool 
CoArbitrary Bool 
Storable Bool 
NFData Bool 
Random Bool 
C Bool 
type Rep Bool = D1 D1Bool ((:+:) (C1 C1_0Bool U1) (C1 C1_1Bool U1)) 
type (==) Bool a b = EqBool a b 

class Bounded a where

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Methods

minBound :: a

maxBound :: a

Instances

Bounded Bool 
Bounded Char 
Bounded Int 
Bounded Int8 
Bounded Int16 
Bounded Int32 
Bounded Int64 
Bounded Ordering 
Bounded Word 
Bounded Word8 
Bounded Word16 
Bounded Word32 
Bounded Word64 
Bounded () 
Bounded GeneralCategory 
Bounded CChar 
Bounded CSChar 
Bounded CUChar 
Bounded CShort 
Bounded CUShort 
Bounded CInt 
Bounded CUInt 
Bounded CLong 
Bounded CULong 
Bounded CLLong 
Bounded CULLong 
Bounded CPtrdiff 
Bounded CSize 
Bounded CWchar 
Bounded CSigAtomic 
Bounded CIntPtr 
Bounded CUIntPtr 
Bounded CIntMax 
Bounded CUIntMax 
Bounded All 
Bounded Any 
Bounded T 
Bounded a => Bounded (Dual a) 
Bounded a => Bounded (Sum a) 
Bounded a => Bounded (Product a) 
(Ord a, Num a, Bounded a) => Bounded (T a) 
Bounded a => Bounded (T a) 
Bounded a => Bounded (T a) 
(Bounded a, Bounded b) => Bounded (a, b) 
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) 
(~) k a b => Bounded ((:~:) k a b) 
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

data Char :: *

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).

data Either a b :: * -> * -> *

The Either type represents values with two possibilities: a value of type Either a b is either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Constructors

Left a 
Right b 

Instances

Error e => Alternative (Either e) 
Monad (Either e) 
Functor (Either a) 
Error e => MonadPlus (Either e) 
Applicative (Either e) 
Foldable (Either a) 
Generic1 (Either a) 
(Eq a, Eq b) => Eq (Either a b) 
(Ord a, Ord b) => Ord (Either a b) 
(Read a, Read b) => Read (Either a b) 
(Show a, Show b) => Show (Either a b) 
Generic (Either a b) 
(Arbitrary a, Arbitrary b) => Arbitrary (Either a b) 
(CoArbitrary a, CoArbitrary b) => CoArbitrary (Either a b) 
(NFData a, NFData b) => NFData (Either a b) 
Typeable (* -> * -> *) Either 
type Rep1 (Either a) = D1 D1Either ((:+:) (C1 C1_0Either (S1 NoSelector (Rec0 a))) (C1 C1_1Either (S1 NoSelector Par1))) 
type Rep (Either a b) = D1 D1Either ((:+:) (C1 C1_0Either (S1 NoSelector (Rec0 a))) (C1 C1_1Either (S1 NoSelector (Rec0 b)))) 
type (==) (Either k k1) a b = EqEither k k1 a b 

class Enum a where

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a

Convert from an Int.

fromEnum :: a -> Int

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a]

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a]

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a]

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a]

Used in Haskell's translation of [n,n'..m].

class Eq a where

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4

(/=) :: a -> a -> Bool infix 4

Instances

Eq Bool 
Eq Char 
Eq Double 
Eq Float 
Eq Int 
Eq Int8 
Eq Int16 
Eq Int32 
Eq Int64 
Eq Integer 
Eq Ordering 
Eq Word 
Eq Word8 
Eq Word16 
Eq Word32 
Eq Word64 
Eq () 
Eq SpecConstrAnnotation 
Eq AsyncException 
Eq ArrayException 
Eq ExitCode 
Eq IOErrorType 
Eq GeneralCategory 
Eq CChar 
Eq CSChar 
Eq CUChar 
Eq CShort 
Eq CUShort 
Eq CInt 
Eq CUInt 
Eq CLong 
Eq CULong 
Eq CLLong 
Eq CULLong 
Eq CFloat 
Eq CDouble 
Eq CPtrdiff 
Eq CSize 
Eq CWchar 
Eq CSigAtomic 
Eq CClock 
Eq CTime 
Eq CUSeconds 
Eq CSUSeconds 
Eq CIntPtr 
Eq CUIntPtr 
Eq CIntMax 
Eq CUIntMax 
Eq MaskingState 
Eq IOException 
Eq All 
Eq Any 
Eq Arity 
Eq Fixity 
Eq Associativity 
Eq Lexeme 
Eq Number 
Eq Message 
Eq ParseError 
Eq SourcePos 
Eq Text 
Eq Text 
Eq LocalTime 
Eq TimeOfDay 
Eq TimeZone 
Eq UTCTime 
Eq NominalDiffTime 
Eq Day 
Eq T 
Eq Dimension 
Eq T 
Eq T 
Eq T 
Eq a => Eq [a] 
Eq a => Eq (Ratio a) 
Eq (Ptr a) 
Eq (FunPtr a) 
Eq (U1 p) 
Eq p => Eq (Par1 p) 
Eq a => Eq (Complex a) 
Eq a => Eq (ZipList a) 
Eq a => Eq (Dual a) 
Eq a => Eq (Sum a) 
Eq a => Eq (Product a) 
Eq a => Eq (First a) 
Eq a => Eq (Last a) 
Eq a => Eq (Maybe a) 
Eq a => Eq (Set a) 
C a => Eq (T a) 
Eq a => Eq (T a) 
Eq a => Eq (ToOrd a) 
Eq a => Eq (Max a) 
Eq a => Eq (Min a) 
Eq a => Eq (LCM a) 
Eq a => Eq (GCD a) 
Eq a => Eq (T a) 
Eq a => Eq (T a) 
Eq a => Eq (T a) 
Ix i => Eq (T i)

These instances may need more work They involve converting a permutation to a table.

Eq i => Eq (Cycle i) 
(Eq a, C a) => Eq (T a) 
(Eq a, C a) => Eq (T a) 
Eq a => Eq (T a) 
Eq a => Eq (T a) 
(Eq a, C a, C a) => Eq (T a) 
Eq a => Eq (T a) 
(Eq a, C a) => Eq (T a) 
(Eq a, C a) => Eq (T a) 
Eq a => Eq (T a) 
(Eq a, C a) => Eq (T a) 
Eq a => Eq (T a) 
Eq (T a) 
Eq a => Eq (T a) 
C a => Eq (T a) 
Eq a => Eq (Valuable a) 
(Eq a, Eq b) => Eq (Either a b) 
Eq (f p) => Eq (Rec1 f p) 
(Eq a, Eq b) => Eq (a, b) 
(Ix i, Eq e) => Eq (Array i e) 
(Eq k, Eq a) => Eq (Map k a) 
(Eq a, Eq b) => Eq (T a b) 
Eq a => Eq (T u a) 
Eq v => Eq (T a v) 
(Eq i, Eq a) => Eq (T i a) 
Eq v => Eq (T a v) 
Eq c => Eq (K1 i c p) 
(Eq (f p), Eq (g p)) => Eq ((:+:) f g p) 
(Eq (f p), Eq (g p)) => Eq ((:*:) f g p) 
Eq (f (g p)) => Eq ((:.:) f g p) 
(Eq a, Eq b, Eq c) => Eq (a, b, c) 
Eq (STArray s i e) 
Eq ((:~:) k a b) 
Eq (f p) => Eq (M1 i c f p) 
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

type FilePath = String

File and directory names are values of type String, whose precise meaning is operating system dependent. Files can be opened, yielding a handle which can then be used to operate on the contents of that file.

class Functor f where

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Methods

fmap :: (a -> b) -> f a -> f b

Instances

Functor [] 
Functor IO 
Functor Rose 
Functor Gen 
Functor ZipList 
Functor Handler 
Functor ReadPrec 
Functor ReadP 
Functor Maybe 
Functor Identity 
Functor Consumed 
Functor PprM 
Functor T 
Functor T 
Functor T 
Functor T 
Functor T 
Functor T 
Functor T

When you use fmap you must assert that forall n. fmap f (Cons d x) == fmap f (Cons (n*d) (x^n))

Functor T 
Functor T 
Functor T 
Functor ((->) r) 
Functor (Either a) 
Functor ((,) a) 
Ix i => Functor (Array i) 
Functor (Const m) 
Monad m => Functor (WrappedMonad m) 
Functor (Map k) 
Functor (Box r) 
Functor (Access r) 
Functor (T v) 
Functor (T a) 
Functor (T a) 
Functor (T i) 
Functor (T a) 
Arrow a => Functor (WrappedArrow a b) 
Functor m => Functor (ErrorT e m) 
Functor (Reply s u) 
Functor (ParsecT s u m) 

data IO a :: * -> *

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a.

There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.

type IOError = IOException

The Haskell 2010 type for exceptions in the IO monad. Any I/O operation may raise an IOError instead of returning a result. For a more general type of exception, including also those that arise in pure code, see Control.Exception.Exception.

In Haskell 2010, this is an opaque type.

data Maybe a :: * -> *

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.

Constructors

Nothing 
Just a 

Instances

Alternative Maybe 
Monad Maybe 
Functor Maybe 
MonadPlus Maybe 
Applicative Maybe 
Foldable Maybe 
Generic1 Maybe 
Eq a => Eq (Maybe a) 
Ord a => Ord (Maybe a) 
Read a => Read (Maybe a) 
Show a => Show (Maybe a) 
Generic (Maybe a) 
Arbitrary a => Arbitrary (Maybe a) 
CoArbitrary a => CoArbitrary (Maybe a) 
Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there is no "Semigroup" typeclass providing just mappend, we use Monoid instead.

NFData a => NFData (Maybe a) 
type Rep1 Maybe = D1 D1Maybe ((:+:) (C1 C1_0Maybe U1) (C1 C1_1Maybe (S1 NoSelector Par1))) 
type Rep (Maybe a) = D1 D1Maybe ((:+:) (C1 C1_0Maybe U1) (C1 C1_1Maybe (S1 NoSelector (Rec0 a)))) 
type (==) (Maybe k) a b = EqMaybe k a b 

class Monad m where

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Minimal complete definition: >>= and return.

Instances of Monad should satisfy the following laws:

return a >>= k  ==  k a
m >>= return  ==  m
m >>= (\x -> k x >>= h)  ==  (m >>= k) >>= h

Instances of both Monad and Functor should additionally satisfy the law:

fmap f xs  ==  xs >>= return . f

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=), return

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: m a -> m b -> m b infixl 1

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a

Inject a value into the monadic type.

fail :: String -> m a

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

Instances

class Eq a => Ord a where

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.

Minimal complete definition

compare | (<=)

Methods

compare :: a -> a -> Ordering

(<) :: a -> a -> Bool infix 4

(>=) :: a -> a -> Bool infix 4

(>) :: a -> a -> Bool infix 4

(<=) :: a -> a -> Bool infix 4

max :: a -> a -> a

min :: a -> a -> a

Instances

Ord Bool 
Ord Char 
Ord Double 
Ord Float 
Ord Int 
Ord Int8 
Ord Int16 
Ord Int32 
Ord Int64 
Ord Integer 
Ord Ordering 
Ord Word 
Ord Word8 
Ord Word16 
Ord Word32 
Ord Word64 
Ord () 
Ord AsyncException 
Ord ArrayException 
Ord ExitCode 
Ord GeneralCategory 
Ord CChar 
Ord CSChar 
Ord CUChar 
Ord CShort 
Ord CUShort 
Ord CInt 
Ord CUInt 
Ord CLong 
Ord CULong 
Ord CLLong 
Ord CULLong 
Ord CFloat 
Ord CDouble 
Ord CPtrdiff 
Ord CSize 
Ord CWchar 
Ord CSigAtomic 
Ord CClock 
Ord CTime 
Ord CUSeconds 
Ord CSUSeconds 
Ord CIntPtr 
Ord CUIntPtr 
Ord CIntMax 
Ord CUIntMax 
Ord All 
Ord Any 
Ord Arity 
Ord Fixity 
Ord Associativity 
Ord Message 
Ord SourcePos 
Ord Text 
Ord Text 
Ord LocalTime 
Ord TimeOfDay 
Ord TimeZone 
Ord UTCTime 
Ord NominalDiffTime 
Ord Day 
Ord Dimension 
Ord T 
Ord T 
Ord T 
Ord a => Ord [a] 
Integral a => Ord (Ratio a) 
Ord (Ptr a) 
Ord (FunPtr a) 
Ord (U1 p) 
Ord p => Ord (Par1 p) 
Ord a => Ord (ZipList a) 
Ord a => Ord (Dual a) 
Ord a => Ord (Sum a) 
Ord a => Ord (Product a) 
Ord a => Ord (First a) 
Ord a => Ord (Last a) 
Ord a => Ord (Maybe a) 
Ord a => Ord (Set a) 
C a => Ord (T a) 
Ord a => Ord (T a) 
C a => Ord (ToOrd a) 
(Ord a, C a) => Ord (T a) 
Ord a => Ord (T a) 
Ix i => Ord (T i) 
(Ord a, C a) => Ord (T a) 
(Ord a, C a) => Ord (T a) 
Ord a => Ord (T a) 
Ord a => Ord (T a) 
(Ord a, C a) => Ord (T a) 
Ord a => Ord (T a) 
C a => Ord (T a) 
Ord a => Ord (Valuable a) 
(Ord a, Ord b) => Ord (Either a b) 
Ord (f p) => Ord (Rec1 f p) 
(Ord a, Ord b) => Ord (a, b) 
(Ix i, Ord e) => Ord (Array i e) 
(Ord k, Ord v) => Ord (Map k v) 
Ord a => Ord (T u a) 
Ord v => Ord (T a v) 
(Ord i, Ord a) => Ord (T i a) 
Ord v => Ord (T a v) 
Ord c => Ord (K1 i c p) 
(Ord (f p), Ord (g p)) => Ord ((:+:) f g p) 
(Ord (f p), Ord (g p)) => Ord ((:*:) f g p) 
Ord (f (g p)) => Ord ((:.:) f g p) 
(Ord a, Ord b, Ord c) => Ord (a, b, c) 
Ord ((:~:) k a b) 
Ord (f p) => Ord (M1 i c f p) 
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) 
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

data Ordering :: *

Constructors

LT 
EQ 
GT 

Instances

Bounded Ordering 
Enum Ordering 
Eq Ordering 
Ord Ordering 
Read Ordering 
Show Ordering 
Ix Ordering 
Generic Ordering 
Arbitrary Ordering 
CoArbitrary Ordering 
Monoid Ordering 
type Rep Ordering = D1 D1Ordering ((:+:) (C1 C1_0Ordering U1) ((:+:) (C1 C1_1Ordering U1) (C1 C1_2Ordering U1))) 
type (==) Ordering a b = EqOrdering a b 

class Read a where

Parsing of Strings, producing values.

Minimal complete definition: readsPrec (or, for GHC only, readPrec)

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 2010 is equivalent to

instance (Read a) => Read (Tree a) where

        readsPrec d r =  readParen (d > app_prec)
                         (\r -> [(Leaf m,t) |
                                 ("Leaf",s) <- lex r,
                                 (m,t) <- readsPrec (app_prec+1) s]) r

                      ++ readParen (d > up_prec)
                         (\r -> [(u:^:v,w) |
                                 (u,s) <- readsPrec (up_prec+1) r,
                                 (":^:",t) <- lex s,
                                 (v,w) <- readsPrec (up_prec+1) t]) r

          where app_prec = 10
                up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

instance (Read a) => Read (Tree a) where

        readPrec = parens $ (prec app_prec $ do
                                 Ident "Leaf" <- lexP
                                 m <- step readPrec
                                 return (Leaf m))

                     +++ (prec up_prec $ do
                                 u <- step readPrec
                                 Symbol ":^:" <- lexP
                                 v <- step readPrec
                                 return (u :^: v))

          where app_prec = 10
                up_prec = 5

        readListPrec = readListPrecDefault

Minimal complete definition

readsPrec | readPrec

Methods

readsPrec

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: ReadS [a]

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

Instances

Read Bool 
Read Char 
Read Double 
Read Float 
Read Int 
Read Int8 
Read Int16 
Read Int32 
Read Int64 
Read Integer 
Read Ordering 
Read Word 
Read Word8 
Read Word16 
Read Word32 
Read Word64 
Read () 
Read StdGen 
Read ExitCode 
Read GeneralCategory 
Read CChar 
Read CSChar 
Read CUChar 
Read CShort 
Read CUShort 
Read CInt 
Read CUInt 
Read CLong 
Read CULong 
Read CLLong 
Read CULLong 
Read CFloat 
Read CDouble 
Read CPtrdiff 
Read CSize 
Read CWchar 
Read CSigAtomic 
Read CClock 
Read CTime 
Read CUSeconds 
Read CSUSeconds 
Read CIntPtr 
Read CUIntPtr 
Read CIntMax 
Read CUIntMax 
Read All 
Read Any 
Read Arity 
Read Fixity 
Read Associativity 
Read Lexeme 
Read Text 
Read Text 
Read LocalTime 
Read ZonedTime 
Read TimeOfDay 
Read TimeZone 
Read UTCTime 
Read Day 
Read T 
Read a => Read [a] 
(Integral a, Read a) => Read (Ratio a) 
Read (U1 p) 
Read p => Read (Par1 p) 
Read a => Read (Complex a) 
Read a => Read (ZipList a) 
Read a => Read (Dual a) 
Read a => Read (Sum a) 
Read a => Read (Product a) 
Read a => Read (First a) 
Read a => Read (Last a) 
Read a => Read (Maybe a) 
(Read a, Ord a) => Read (Set a) 
(Read a, C a) => Read (T a) 
Read a => Read (T a) 
Read i => Read (Cycle i) 
(Read a, C a) => Read (T a) 
Read a => Read (T a) 
Read a => Read (T a) 
Read a => Read (T a) 
(Read a, Read b) => Read (Either a b) 
Read (f p) => Read (Rec1 f p) 
(Read a, Read b) => Read (a, b) 
(Ix a, Read a, Read b) => Read (Array a b) 
(Ord k, Read k, Read e) => Read (Map k e) 
(Read v, Ord a, C a, C a v) => Read (T a v) 
Read c => Read (K1 i c p) 
(Read (f p), Read (g p)) => Read ((:+:) f g p) 
(Read (f p), Read (g p)) => Read ((:*:) f g p) 
Read (f (g p)) => Read ((:.:) f g p) 
(Read a, Read b, Read c) => Read (a, b, c) 
(~) k a b => Read ((:~:) k a b) 
Read (f p) => Read (M1 i c f p) 
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) 
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) 
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

type ReadS a = String -> [(a, String)]

A parser for a type a, represented as a function that takes a String and returns a list of possible parses as (a,String) pairs.

Note that this kind of backtracking parser is very inefficient; reading a large structure may be quite slow (cf ReadP).

class Show a where

Conversion of values to readable Strings.

Minimal complete definition: showsPrec or show.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show Bool 
Show Char 
Show Double 
Show Float 
Show Int 
Show Int8 
Show Int16 
Show Int32 
Show Int64 
Show Integer 
Show Ordering 
Show Word 
Show Word8 
Show Word16 
Show Word32 
Show Word64 
Show () 
Show StdGen 
Show BlockedIndefinitelyOnMVar 
Show BlockedIndefinitelyOnSTM 
Show Deadlock 
Show AssertionFailed 
Show SomeAsyncException 
Show AsyncException 
Show ArrayException 
Show ExitCode 
Show IOErrorType 
Show GeneralCategory 
Show CChar 
Show CSChar 
Show CUChar 
Show CShort 
Show CUShort 
Show CInt 
Show CUInt 
Show CLong 
Show CULong 
Show CLLong 
Show CULLong 
Show CFloat 
Show CDouble 
Show CPtrdiff 
Show CSize 
Show CWchar 
Show CSigAtomic 
Show CClock 
Show CTime 
Show CUSeconds 
Show CSUSeconds 
Show CIntPtr 
Show CUIntPtr 
Show CIntMax 
Show CUIntMax 
Show MaskingState 
Show IOException 
Show All 
Show Any 
Show Arity 
Show Fixity 
Show Associativity 
Show Lexeme 
Show Number 
Show ParseError 
Show SourcePos 
Show Doc 
Show Doc 
Show Text 
Show Text 
Show Padding 
Show DateFormatSpec 
Show LocalTime 
Show ZonedTime 
Show TimeOfDay 
Show TimeZone 
Show UTCTime 
Show NominalDiffTime 
Show Day 
Show Voltage 
Show Information 
Show Temperature 
Show Angle 
Show Charge 
Show Mass 
Show Time 
Show Length 
Show Scalar 
Show T 
Show Dimension 
Show T 
Show T 
Show T 
Show a => Show [a] 
(Integral a, Show a) => Show (Ratio a) 
Show (Ptr a) 
Show (FunPtr a) 
Show (U1 p) 
Show p => Show (Par1 p) 
Show a => Show (Complex a) 
Show a => Show (ZipList a) 
Show a => Show (Dual a) 
Show a => Show (Sum a) 
Show a => Show (Product a) 
Show a => Show (First a) 
Show a => Show (Last a) 
Show a => Show (Maybe a) 
Show a => Show (Set a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (ToOrd a) 
Show a => Show (Recip a) 
Show a => Show (Max a) 
Show a => Show (Min a) 
Show a => Show (LCM a) 
Show a => Show (GCD a) 
(Show a, C a) => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show i => Show (T i) 
Show i => Show (Cycle i) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (Scale a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show (T a) 
Show a => Show (T a) 
Show a => Show (T a) 
Show a => Show (Valuable a) 
(Show a, Show b) => Show (Either a b) 
Show (f p) => Show (Rec1 f p) 
(Show a, Show b) => Show (a, b) 
(Ix a, Show a, Show b) => Show (Array a b) 
(Show k, Show a) => Show (Map k a) 
(Show a, Show b) => Show (Mul a b) 
(Show a, Show b) => Show (T a b) 
(Show i, Show a) => Show (UnitSet i a) 
(C u, Show a) => Show (T u a) 
Show v => Show (T a v) 
(Ord i, Enum i, Show a) => Show (T i a) 
(Show v, Ord a, C a, C a v) => Show (T a v) 
Show c => Show (K1 i c p) 
(Show (f p), Show (g p)) => Show ((:+:) f g p) 
(Show (f p), Show (g p)) => Show ((:*:) f g p) 
Show (f (g p)) => Show ((:.:) f g p) 
(Show a, Show b, Show c) => Show (a, b, c) 
Show ((:~:) k a b) 
Show (f p) => Show (M1 i c f p) 
(Show a, Show b, Show c, Show d) => Show (a, b, c, d) 
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) 
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

type ShowS = String -> String

The shows functions return a function that prepends the output String to an existing String. This allows constant-time concatenation of results using function composition.

type String = [Char]

A String is a list of characters. String constants in Haskell are values of type String.

all :: (a -> Bool) -> [a] -> Bool

Applied to a predicate and a list, all determines if all elements of the list satisfy the predicate. For the result to be True, the list must be finite; False, however, results from a False value for the predicate applied to an element at a finite index of a finite or infinite list.

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list. For the result to be True, the list must be finite; False, however, results from a False value at a finite index of a finite or infinite list.

any :: (a -> Bool) -> [a] -> Bool

Applied to a predicate and a list, any determines if any element of the list satisfies the predicate. For the result to be False, the list must be finite; True, however, results from a True value for the predicate applied to an element at a finite index of a finite or infinite list.

appendFile :: FilePath -> String -> IO ()

The computation appendFile file str function appends the string str, to the file file.

Note that writeFile and appendFile write a literal string to a file. To write a value of any printable type, as with print, use the show function to convert the value to a string first.

main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])

asTypeOf :: a -> a -> a

asTypeOf is a type-restricted version of const. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.

break :: (a -> Bool) -> [a] -> ([a], [a])

break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list:

break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4])
break (< 9) [1,2,3] == ([],[1,2,3])
break (> 9) [1,2,3] == ([1,2,3],[])

break p is equivalent to span (not . p).

concat :: [[a]] -> [a]

Concatenate a list of lists.

concatMap :: (a -> [b]) -> [a] -> [b]

Map a function over a list and concatenate the results.

const :: a -> b -> a

Constant function.

curry :: ((a, b) -> c) -> a -> b -> c

curry converts an uncurried function to a curried function.

cycle :: [a] -> [a]

cycle ties a finite list into a circular one, or equivalently, the infinite repetition of the original list. It is the identity on infinite lists.

drop :: Int -> [a] -> [a]

drop n xs returns the suffix of xs after the first n elements, or [] if n > length xs:

drop 6 "Hello World!" == "World!"
drop 3 [1,2,3,4,5] == [4,5]
drop 3 [1,2] == []
drop 3 [] == []
drop (-1) [1,2] == [1,2]
drop 0 [1,2] == [1,2]

It is an instance of the more general genericDrop, in which n may be of any integral type.

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after takeWhile p xs:

dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
dropWhile (< 9) [1,2,3] == []
dropWhile (< 0) [1,2,3] == [1,2,3]

either :: (a -> c) -> (b -> c) -> Either a b -> c

Case analysis for the Either type. If the value is Left a, apply the first function to a; if it is Right b, apply the second function to b.

elem :: Eq a => a -> [a] -> Bool infix 4

elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False, the list must be finite; True, however, results from an element equal to x found at a finite index of a finite or infinite list.

error :: [Char] -> a

error stops execution and displays an error message.

filter :: (a -> Bool) -> [a] -> [a]

filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,

filter p xs = [ x | x <- xs, p x]

flip :: (a -> b -> c) -> b -> a -> c

flip f takes its (first) two arguments in the reverse order of f.

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn

The list must be finite.

foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty lists.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 is a variant of foldr that has no starting value argument, and thus must be applied to non-empty lists.

fst :: (a, b) -> a

Extract the first component of a pair.

getChar :: IO Char

Read a character from the standard input device (same as hGetChar stdin).

getContents :: IO String

The getContents operation returns all user input as a single string, which is read lazily as it is needed (same as hGetContents stdin).

getLine :: IO String

Read a line from the standard input device (same as hGetLine stdin).

head :: [a] -> a

Extract the first element of a list, which must be non-empty.

id :: a -> a

Identity function.

init :: [a] -> [a]

Return all the elements of a list except the last one. The list must be non-empty.

interact :: (String -> String) -> IO ()

The interact function takes a function of type String->String as its argument. The entire input from the standard input device is passed to this function as its argument, and the resulting string is output on the standard output device.

ioError :: IOError -> IO a

Raise an IOError in the IO monad.

iterate :: (a -> a) -> a -> [a]

iterate f x returns an infinite list of repeated applications of f to x:

iterate f x == [x, f x, f (f x), ...]

last :: [a] -> a

Extract the last element of a list, which must be finite and non-empty.

length :: [a] -> Int

O(n). length returns the length of a finite list as an Int. It is an instance of the more general genericLength, the result type of which may be any kind of number.

lex :: ReadS String

The lex function reads a single lexeme from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the input string contains only white space, lex returns a single successful `lexeme' consisting of the empty string. (Thus lex "" = [("","")].) If there is no legal lexeme at the beginning of the input string, lex fails (i.e. returns []).

This lexer is not completely faithful to the Haskell lexical syntax in the following respects:

  • Qualified names are not handled properly
  • Octal and hexadecimal numerics are not recognized as a single token
  • Comments are not treated properly

lines :: String -> [String]

lines breaks a string up into a list of strings at newline characters. The resulting strings do not contain newlines.

lookup :: Eq a => a -> [(a, b)] -> Maybe b

lookup key assocs looks up a key in an association list.

map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
map f [x1, x2, ...] == [f x1, f x2, ...]

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f is equivalent to sequence . map f.

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

mapM_ f is equivalent to sequence_ . map f.

maximum :: Ord a => [a] -> a

maximum returns the maximum value from a list, which must be non-empty, finite, and of an ordered type. It is a special case of maximumBy, which allows the programmer to supply their own comparison function.

maybe :: b -> (a -> b) -> Maybe a -> b

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is Nothing, the function returns the default value. Otherwise, it applies the function to the value inside the Just and returns the result.

minimum :: Ord a => [a] -> a

minimum returns the minimum value from a list, which must be non-empty, finite, and of an ordered type. It is a special case of minimumBy, which allows the programmer to supply their own comparison function.

not :: Bool -> Bool

Boolean "not"

notElem :: Eq a => a -> [a] -> Bool infix 4

notElem is the negation of elem.

null :: [a] -> Bool

Test whether a list is empty.

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list. For the result to be False, the list must be finite; True, however, results from a True value at a finite index of a finite or infinite list.

otherwise :: Bool

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

print :: Show a => a -> IO ()

The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

main = print ([(n, 2^n) | n <- [0..19]])

putChar :: Char -> IO ()

Write a character to the standard output device (same as hPutChar stdout).

putStr :: String -> IO ()

Write a string to the standard output device (same as hPutStr stdout).

putStrLn :: String -> IO ()

The same as putStr, but adds a newline character.

read :: Read a => String -> a

The read function reads input from a string, which must be completely consumed by the input process.

readFile :: FilePath -> IO String

The readFile function reads a file and returns the contents of the file as a string. The file is read lazily, on demand, as with getContents.

readIO :: Read a => String -> IO a

The readIO function is similar to read except that it signals parse failure to the IO monad instead of terminating the program.

readLn :: Read a => IO a

The readLn function combines getLine and readIO.

readParen :: Bool -> ReadS a -> ReadS a

readParen True p parses what p parses, but surrounded with parentheses.

readParen False p parses what p parses, but optionally surrounded with parentheses.

reads :: Read a => ReadS a

equivalent to readsPrec with a precedence of 0.

realToFrac :: (Real a, Fractional b) => a -> b

general coercion to fractional types

repeat :: a -> [a]

repeat x is an infinite list, with x the value of every element.

replicate :: Int -> a -> [a]

replicate n x is a list of length n with x the value of every element. It is an instance of the more general genericReplicate, in which n may be of any integral type.

reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must be finite.

scanl :: (b -> a -> b) -> b -> [a] -> [b]

scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]

Note that

last (scanl f z xs) == foldl f z xs.

scanl1 :: (a -> a -> a) -> [a] -> [a]

scanl1 is a variant of scanl that has no starting value argument:

scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]

scanr :: (a -> b -> b) -> b -> [a] -> [b]

scanr is the right-to-left dual of scanl. Note that

head (scanr f z xs) == foldr f z xs.

scanr1 :: (a -> a -> a) -> [a] -> [a]

scanr1 is a variant of scanr that has no starting value argument.

seq :: a -> b -> b

Evaluates its first argument to head normal form, and then returns its second argument as the result.

sequence :: Monad m => [m a] -> m [a]

Evaluate each action in the sequence from left to right, and collect the results.

sequence_ :: Monad m => [m a] -> m ()

Evaluate each action in the sequence from left to right, and ignore the results.

showChar :: Char -> ShowS

utility function converting a Char to a show function that simply prepends the character unchanged.

showParen :: Bool -> ShowS -> ShowS

utility function that surrounds the inner show function with parentheses when the Bool parameter is True.

showString :: String -> ShowS

utility function converting a String to a show function that simply prepends the string unchanged.

shows :: Show a => a -> ShowS

equivalent to showsPrec with a precedence of 0.

snd :: (a, b) -> b

Extract the second component of a pair.

span :: (a -> Bool) -> [a] -> ([a], [a])

span, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that satisfy p and second element is the remainder of the list:

span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4])
span (< 9) [1,2,3] == ([1,2,3],[])
span (< 0) [1,2,3] == ([],[1,2,3])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs)

splitAt :: Int -> [a] -> ([a], [a])

splitAt n xs returns a tuple where first element is xs prefix of length n and second element is the remainder of the list:

splitAt 6 "Hello World!" == ("Hello ","World!")
splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
splitAt 1 [1,2,3] == ([1],[2,3])
splitAt 3 [1,2,3] == ([1,2,3],[])
splitAt 4 [1,2,3] == ([1,2,3],[])
splitAt 0 [1,2,3] == ([],[1,2,3])
splitAt (-1) [1,2,3] == ([],[1,2,3])

It is equivalent to (take n xs, drop n xs) when n is not _|_ (splitAt _|_ xs = _|_). splitAt is an instance of the more general genericSplitAt, in which n may be of any integral type.

tail :: [a] -> [a]

Extract the elements after the head of a list, which must be non-empty.

take :: Int -> [a] -> [a]

take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if n > length xs:

take 5 "Hello World!" == "Hello"
take 3 [1,2,3,4,5] == [1,2,3]
take 3 [1,2] == [1,2]
take 3 [] == []
take (-1) [1,2] == []
take 0 [1,2] == []

It is an instance of the more general genericTake, in which n may be of any integral type.

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p:

takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
takeWhile (< 9) [1,2,3] == [1,2,3]
takeWhile (< 0) [1,2,3] == []

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry converts a curried function to a function on pairs.

undefined :: a

A special case of error. It is expected that compilers will recognize this and insert error messages which are more appropriate to the context in which undefined appears.

unlines :: [String] -> String

unlines is an inverse operation to lines. It joins lines, after appending a terminating newline to each.

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f yields the result of applying f until p holds.

unwords :: [String] -> String

unwords is an inverse operation to words. It joins words with separating spaces.

unzip :: [(a, b)] -> ([a], [b])

unzip transforms a list of pairs into a list of first components and a list of second components.

unzip3 :: [(a, b, c)] -> ([a], [b], [c])

The unzip3 function takes a list of triples and returns three lists, analogous to unzip.

userError :: String -> IOError

Construct an IOError value with a string describing the error. The fail method of the IO instance of the Monad class raises a userError, thus:

instance Monad IO where
  ...
  fail s = ioError (userError s)

words :: String -> [String]

words breaks a string up into a list of words, which were delimited by white space.

writeFile :: FilePath -> String -> IO ()

The computation writeFile file str function writes the string str, to the file file.

zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements of the longer list are discarded.

zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]

zip3 takes three lists and returns a list of triples, analogous to zip.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function. For example, zipWith (+) is applied to two lists to produce the list of corresponding sums.

zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]

The zipWith3 function takes a function which combines three elements, as well as three lists and returns a list of their point-wise combination, analogous to zipWith.

(||) :: Bool -> Bool -> Bool infixr 2

Boolean "or"

catch :: IO a -> (IOError -> IO a) -> IO a Source

ifThenElse :: Bool -> a -> a -> a

The same as if', but the name is chosen such that it can be used for GHC-7.0's rebindable if-then-else syntax.