module Number.Root where
import qualified Algebra.Algebraic as Algebraic
import qualified Algebra.Field as Field
import qualified Algebra.Ring as Ring
import qualified MathObj.RootSet as RootSet
import qualified Number.Ratio as Ratio
import Algebra.IntegralDomain (divChecked, )
import qualified NumericPrelude.Numeric as NP
import NumericPrelude.Numeric hiding (recip, )
import NumericPrelude.Base
import Prelude ()
data T a = Cons Integer a
deriving (Show)
instance Functor T where
fmap f (Cons d x) = Cons d (f x)
fromNumber :: a -> T a
fromNumber = Cons 1
toNumber :: Algebraic.C a => T a -> a
toNumber (Cons n x) = Algebraic.root n x
toRootSet :: Ring.C a => T a -> RootSet.T a
toRootSet (Cons d x) =
RootSet.lift0 ([negate x] ++ replicate (pred (fromInteger d)) zero ++ [one])
commonDegree :: Ring.C a => T a -> T a -> T (a,a)
commonDegree (Cons xd x) (Cons yd y) =
let zd = lcm xd yd
in Cons zd (x ^ divChecked zd xd, y ^ divChecked zd yd)
instance (Eq a, Ring.C a) => Eq (T a) where
x == y =
case commonDegree x y of
Cons _ (xn,yn) -> xn==yn
instance (Ord a, Ring.C a) => Ord (T a) where
compare x y =
case commonDegree x y of
Cons _ (xn,yn) -> compare xn yn
mul :: Ring.C a => T a -> T a -> T a
mul x y = fmap (uncurry (*)) $ commonDegree x y
div :: Field.C a => T a -> T a -> T a
div x y = fmap (uncurry (/)) $ commonDegree x y
recip :: Field.C a => T a -> T a
recip = fmap NP.recip
cardinalPower :: Ring.C a => Integer -> T a -> T a
cardinalPower n (Cons d x) =
let m = gcd n d
in Cons (divChecked d m) (x ^ divChecked n m)
integerPower :: Field.C a => Integer -> T a -> T a
integerPower n =
if n<0
then cardinalPower (-n) . recip
else cardinalPower n
rationalPower :: Field.C a => Rational -> T a -> T a
rationalPower n =
integerPower (Ratio.numerator n) .
root (Ratio.denominator n)
root :: Ring.C a => Integer -> T a -> T a
root n (Cons d x) = Cons (d*n) x
sqrt :: Ring.C a => T a -> T a
sqrt = root 2