{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
module Algebra.NormedSpace.Sum where
import NumericPrelude.Base
import NumericPrelude.Numeric
import qualified Prelude as P
import qualified Number.Ratio as Ratio
import qualified Algebra.PrincipalIdealDomain as PID
import qualified Algebra.Absolute as Absolute
import qualified Algebra.Additive as Additive
import qualified Algebra.Module as Module
import qualified Data.Complex as Complex98
import qualified Data.Foldable as Fold
class (Absolute.C a, Module.C a v) => C a v where
norm :: v -> a
{-# INLINE normFoldable #-}
normFoldable ::
(C a v, Fold.Foldable f) => f v -> a
normFoldable :: f v -> a
normFoldable =
(a -> v -> a) -> a -> f v -> a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Fold.foldl (\a
a v
v -> a
a a -> a -> a
forall a. C a => a -> a -> a
+ v -> a
forall a v. C a v => v -> a
norm v
v) a
forall a. C a => a
zero
{-# INLINE normFoldable1 #-}
normFoldable1 ::
(C a v, Fold.Foldable f, Functor f) => f v -> a
normFoldable1 :: f v -> a
normFoldable1 =
(a -> a -> a) -> f a -> a
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
Fold.foldl1 a -> a -> a
forall a. C a => a -> a -> a
(+) (f a -> a) -> (f v -> f a) -> f v -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (v -> a) -> f v -> f a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap v -> a
forall a v. C a v => v -> a
norm
instance C Float Float where
norm :: Float -> Float
norm = Float -> Float
forall a. C a => a -> a
abs
instance C Double Double where
norm :: Double -> Double
norm = Double -> Double
forall a. C a => a -> a
abs
instance C Int Int where
norm :: Int -> Int
norm = Int -> Int
forall a. C a => a -> a
abs
instance C Integer Integer where
norm :: Integer -> Integer
norm = Integer -> Integer
forall a. C a => a -> a
abs
instance (Absolute.C a, PID.C a) => C (Ratio.T a) (Ratio.T a) where
norm :: T a -> T a
norm = T a -> T a
forall a. C a => a -> a
abs
instance (Additive.C a, C a v0, C a v1) => C a (v0, v1) where
norm :: (v0, v1) -> a
norm (v0
x0,v1
x1) = v0 -> a
forall a v. C a v => v -> a
norm v0
x0 a -> a -> a
forall a. C a => a -> a -> a
+ v1 -> a
forall a v. C a v => v -> a
norm v1
x1
instance (Additive.C a, C a v0, C a v1, C a v2) => C a (v0, v1, v2) where
norm :: (v0, v1, v2) -> a
norm (v0
x0,v1
x1,v2
x2) = v0 -> a
forall a v. C a v => v -> a
norm v0
x0 a -> a -> a
forall a. C a => a -> a -> a
+ v1 -> a
forall a v. C a v => v -> a
norm v1
x1 a -> a -> a
forall a. C a => a -> a -> a
+ v2 -> a
forall a v. C a v => v -> a
norm v2
x2
instance (Additive.C a, C a v) => C a [v] where
norm :: [v] -> a
norm = [a] -> a
forall a. C a => [a] -> a
sum ([a] -> a) -> ([v] -> [a]) -> [v] -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (v -> a) -> [v] -> [a]
forall a b. (a -> b) -> [a] -> [b]
map v -> a
forall a v. C a v => v -> a
norm
instance (C a v, P.RealFloat v) => C a (Complex98.Complex v) where
norm :: Complex v -> a
norm (v
x0 Complex98.:+ v
x1) = v -> a
forall a v. C a v => v -> a
norm v
x0 a -> a -> a
forall a. C a => a -> a -> a
+ v -> a
forall a v. C a v => v -> a
norm v
x1