numeric-prelude-0.4.3: An experimental alternative hierarchy of numeric type classes

Safe HaskellNone
LanguageHaskell98

MathObj.PowerSeries

Description

Power series, either finite or unbounded. (zipWith does exactly the right thing to make it work almost transparently.)

Synopsis

Documentation

newtype T a Source #

Constructors

Cons 

Fields

Instances

Functor T Source # 

Methods

fmap :: (a -> b) -> T a -> T b #

(<$) :: a -> T b -> T a #

C T Source # 

Methods

zero :: C a => T a Source #

(<+>) :: C a => T a -> T a -> T a Source #

(*>) :: C a => a -> T a -> T a Source #

C a b => C a (T b) Source # 

Methods

(*>) :: a -> T b -> T b Source #

(C a, C a b) => C a (T b) Source # 
(Eq a, C a) => Eq (T a) Source # 

Methods

(==) :: T a -> T a -> Bool #

(/=) :: T a -> T a -> Bool #

(C a, Ord a) => Ord (T a) Source # 

Methods

compare :: T a -> T a -> Ordering #

(<) :: T a -> T a -> Bool #

(<=) :: T a -> T a -> Bool #

(>) :: T a -> T a -> Bool #

(>=) :: T a -> T a -> Bool #

max :: T a -> T a -> T a #

min :: T a -> T a -> T a #

Show a => Show (T a) Source # 

Methods

showsPrec :: Int -> T a -> ShowS #

show :: T a -> String #

showList :: [T a] -> ShowS #

C a => C (T a) Source # 

Methods

zero :: T a Source #

(+) :: T a -> T a -> T a Source #

(-) :: T a -> T a -> T a Source #

negate :: T a -> T a Source #

C a => C (T a) Source # 

Methods

(*) :: T a -> T a -> T a Source #

one :: T a Source #

fromInteger :: Integer -> T a Source #

(^) :: T a -> Integer -> T a Source #

(C a, C a) => C (T a) Source # 

Methods

div :: T a -> T a -> T a Source #

mod :: T a -> T a -> T a Source #

divMod :: T a -> T a -> (T a, T a) Source #

C a => C (T a) Source # 

Methods

differentiate :: T a -> T a Source #

C a => C (T a) Source # 

Methods

(/) :: T a -> T a -> T a Source #

recip :: T a -> T a Source #

fromRational' :: Rational -> T a Source #

(^-) :: T a -> Integer -> T a Source #

C a => C (T a) Source # 

Methods

sqrt :: T a -> T a Source #

root :: Integer -> T a -> T a Source #

(^/) :: T a -> Rational -> T a Source #

C a => C (T a) Source # 

Methods

pi :: T a Source #

exp :: T a -> T a Source #

log :: T a -> T a Source #

logBase :: T a -> T a -> T a Source #

(**) :: T a -> T a -> T a Source #

sin :: T a -> T a Source #

cos :: T a -> T a Source #

tan :: T a -> T a Source #

asin :: T a -> T a Source #

acos :: T a -> T a Source #

atan :: T a -> T a Source #

sinh :: T a -> T a Source #

cosh :: T a -> T a Source #

tanh :: T a -> T a Source #

asinh :: T a -> T a Source #

acosh :: T a -> T a Source #

atanh :: T a -> T a Source #

fromCoeffs :: [a] -> T a Source #

lift0 :: [a] -> T a Source #

lift1 :: ([a] -> [a]) -> T a -> T a Source #

lift2 :: ([a] -> [a] -> [a]) -> T a -> T a -> T a Source #

const :: a -> T a Source #

truncate :: Int -> T a -> T a Source #

evaluate :: C a => T a -> a -> a Source #

Evaluate (truncated) power series.

evaluateCoeffVector :: C a v => T v -> a -> v Source #

Evaluate (truncated) power series.

evaluateArgVector :: (C a v, C v) => T a -> v -> v Source #

approximate :: C a => T a -> a -> [a] Source #

Evaluate approximations that is evaluate all truncations of the series.

approximateCoeffVector :: C a v => T v -> a -> [v] Source #

Evaluate approximations that is evaluate all truncations of the series.

approximateArgVector :: (C a v, C v) => T a -> v -> [v] Source #

Evaluate approximations that is evaluate all truncations of the series.

compose :: (C a, C a) => T a -> T a -> T a Source #

It fulfills evaluate x . evaluate y == evaluate (compose x y)

shrink :: C a => a -> T a -> T a Source #

dilate :: C a => a -> T a -> T a Source #