-- | Ring classes module NumHask.Algebra.Ring ( Distributive, Ring, StarSemiring (..), KleeneAlgebra, InvolutiveRing (..), two, ) where import Data.Int (Int16, Int32, Int64, Int8) import Data.Word (Word, Word16, Word32, Word64, Word8) import GHC.Natural (Natural (..)) import NumHask.Algebra.Additive (Additive ((+)), Subtractive) import NumHask.Algebra.Group (Idempotent) import NumHask.Algebra.Multiplicative (Multiplicative (..)) import qualified Prelude as P -- $setup -- -- >>> :set -XRebindableSyntax -- >>> import NumHask.Prelude -- | <https://en.wikipedia.org/wiki/Distributive_property Distributive> -- -- prop> \a b c -> a * (b + c) == a * b + a * c -- prop> \a b c -> (a + b) * c == a * c + b * c -- prop> \a -> zero * a == zero -- prop> \a -> a * zero == zero -- -- The sneaking in of the <https://en.wikipedia.org/wiki/Absorbing_element Absorption> laws here glosses over the possibility that the multiplicative zero element does not have to correspond with the additive unital zero. type Distributive a = (Additive a, Multiplicative a) -- | A <https://en.wikipedia.org/wiki/Ring_(mathematics) Ring> is an abelian group under addition ('NumHask.Algebra.Unital', 'NumHask.Algebra.Associative', 'NumHask.Algebra.Commutative', 'NumHask.Algebra.Invertible') and monoidal under multiplication ('NumHask.Algebra.Unital', 'NumHask.Algebra.Associative'), and where multiplication distributes over addition. -- -- > \a -> zero + a == a -- > \a -> a + zero == a -- > \a b c -> (a + b) + c == a + (b + c) -- > \a b -> a + b == b + a -- > \a -> a - a == zero -- > \a -> negate a == zero - a -- > \a -> negate a + a == zero -- > \a -> a + negate a == zero -- > \a -> one * a == a -- > \a -> a * one == a -- > \a b c -> (a * b) * c == a * (b * c) -- > \a b c -> a * (b + c) == a * b + a * c -- > \a b c -> (a + b) * c == a * c + b * c -- > \a -> zero * a == zero -- > \a -> a * zero == zero type Ring a = (Distributive a, Subtractive a) -- | A <https://en.wikipedia.org/wiki/Semiring#Star_semirings StarSemiring> is a semiring with an additional unary operator (star) satisfying: -- -- > \a -> star a == one + a * star a class (Distributive a) => StarSemiring a where {-# MINIMAL star | plus #-} star :: a -> a star a a = forall a. Multiplicative a => a one forall a. Additive a => a -> a -> a + forall a. StarSemiring a => a -> a plus a a plus :: a -> a plus a a = a a forall a. Multiplicative a => a -> a -> a * forall a. StarSemiring a => a -> a star a a -- | A <https://en.wikipedia.org/wiki/Kleene_algebra Kleene Algebra> is a Star Semiring with idempotent addition. -- -- > a * x + x = a ==> star a * x + x = x -- > x * a + x = a ==> x * star a + x = x class (StarSemiring a, Idempotent a) => KleeneAlgebra a -- | Involutive Ring -- -- > adj (a + b) ==> adj a + adj b -- > adj (a * b) ==> adj a * adj b -- > adj one ==> one -- > adj (adj a) ==> a -- -- Note: elements for which @adj a == a@ are called "self-adjoint". class (Distributive a) => InvolutiveRing a where adj :: a -> a adj a x = a x instance InvolutiveRing P.Double instance InvolutiveRing P.Float instance InvolutiveRing P.Integer instance InvolutiveRing P.Int instance InvolutiveRing Natural instance InvolutiveRing Int8 instance InvolutiveRing Int16 instance InvolutiveRing Int32 instance InvolutiveRing Int64 instance InvolutiveRing Word instance InvolutiveRing Word8 instance InvolutiveRing Word16 instance InvolutiveRing Word32 instance InvolutiveRing Word64 -- | Defining 'two' requires adding the multiplicative unital to itself. In other words, the concept of 'two' is a Ring one. -- -- >>> two -- 2 two :: (Multiplicative a, Additive a) => a two :: forall a. (Multiplicative a, Additive a) => a two = forall a. Multiplicative a => a one forall a. Additive a => a -> a -> a + forall a. Multiplicative a => a one