{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module NumHask.Space.Range
( Range (..),
gridSensible,
)
where
import Data.Distributive as D
import Data.Functor.Apply (Apply (..))
import Data.Functor.Classes
import Data.Functor.Rep
import GHC.Show (show)
import NumHask.Prelude hiding (show)
import NumHask.Space.Types as S
data Range a = Range a a
deriving (Range a -> Range a -> Bool
forall a. Eq a => Range a -> Range a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Range a -> Range a -> Bool
$c/= :: forall a. Eq a => Range a -> Range a -> Bool
== :: Range a -> Range a -> Bool
$c== :: forall a. Eq a => Range a -> Range a -> Bool
Eq, forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Range a) x -> Range a
forall a x. Range a -> Rep (Range a) x
$cto :: forall a x. Rep (Range a) x -> Range a
$cfrom :: forall a x. Range a -> Rep (Range a) x
Generic)
instance Eq1 Range where
liftEq :: forall a b. (a -> b -> Bool) -> Range a -> Range b -> Bool
liftEq a -> b -> Bool
f (Range a
a a
b) (Range b
c b
d) = a -> b -> Bool
f a
a b
c Bool -> Bool -> Bool
&& a -> b -> Bool
f a
b b
d
instance (Show a) => Show (Range a) where
show :: Range a -> String
show (Range a
a a
b) = String
"Range " forall a. Semigroup a => a -> a -> a
<> forall a. Show a => a -> String
show a
a forall a. Semigroup a => a -> a -> a
<> String
" " forall a. Semigroup a => a -> a -> a
<> forall a. Show a => a -> String
show a
b
instance Functor Range where
fmap :: forall a b. (a -> b) -> Range a -> Range b
fmap a -> b
f (Range a
a a
b) = forall a. a -> a -> Range a
Range (a -> b
f a
a) (a -> b
f a
b)
instance Apply Range where
Range a -> b
fa a -> b
fb <.> :: forall a b. Range (a -> b) -> Range a -> Range b
<.> Range a
a a
b = forall a. a -> a -> Range a
Range (a -> b
fa a
a) (a -> b
fb a
b)
instance Applicative Range where
pure :: forall a. a -> Range a
pure a
a = forall a. a -> a -> Range a
Range a
a a
a
(Range a -> b
fa a -> b
fb) <*> :: forall a b. Range (a -> b) -> Range a -> Range b
<*> Range a
a a
b = forall a. a -> a -> Range a
Range (a -> b
fa a
a) (a -> b
fb a
b)
instance Foldable Range where
foldMap :: forall m a. Monoid m => (a -> m) -> Range a -> m
foldMap a -> m
f (Range a
a a
b) = a -> m
f a
a forall a. Monoid a => a -> a -> a
`mappend` a -> m
f a
b
instance Traversable Range where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Range a -> f (Range b)
traverse a -> f b
f (Range a
a a
b) = forall a. a -> a -> Range a
Range forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> a -> f b
f a
b
instance D.Distributive Range where
collect :: forall (f :: * -> *) a b.
Functor f =>
(a -> Range b) -> f a -> Range (f b)
collect a -> Range b
f f a
x = forall a. a -> a -> Range a
Range (forall {a}. Range a -> a
getL forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Range b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
x) (forall {a}. Range a -> a
getR forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Range b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
x)
where
getL :: Range a -> a
getL (Range a
l a
_) = a
l
getR :: Range a -> a
getR (Range a
_ a
r) = a
r
instance Representable Range where
type Rep Range = Bool
tabulate :: forall a. (Rep Range -> a) -> Range a
tabulate Rep Range -> a
f = forall a. a -> a -> Range a
Range (Rep Range -> a
f Bool
False) (Rep Range -> a
f Bool
True)
index :: forall a. Range a -> Rep Range -> a
index (Range a
l a
_) Bool
Rep Range
False = a
l
index (Range a
_ a
r) Bool
Rep Range
True = a
r
instance (Ord a) => JoinSemiLattice (Range a) where
\/ :: Range a -> Range a -> Range a
(\/) = forall (f :: * -> *) a b c.
Representable f =>
(a -> b -> c) -> f a -> f b -> f c
liftR2 forall a. Ord a => a -> a -> a
min
instance (Ord a) => MeetSemiLattice (Range a) where
/\ :: Range a -> Range a -> Range a
(/\) = forall (f :: * -> *) a b c.
Representable f =>
(a -> b -> c) -> f a -> f b -> f c
liftR2 forall a. Ord a => a -> a -> a
max
instance (Ord a) => Space (Range a) where
type Element (Range a) = a
lower :: Range a -> Element (Range a)
lower (Range a
l a
_) = a
l
upper :: Range a -> Element (Range a)
upper (Range a
_ a
u) = a
u
>.< :: Element (Range a) -> Element (Range a) -> Range a
(>.<) = forall a. a -> a -> Range a
Range
instance (Field a, Ord a, FromIntegral a Int) => FieldSpace (Range a) where
type Grid (Range a) = Int
grid :: Pos -> Range a -> Grid (Range a) -> [Element (Range a)]
grid Pos
o Range a
s Grid (Range a)
n = (forall a. Additive a => a -> a -> a
+ forall a. a -> a -> Bool -> a
bool forall a. Additive a => a
zero (a
step forall a. Divisive a => a -> a -> a
/ forall a. (Multiplicative a, Additive a) => a
two) (Pos
o forall a. Eq a => a -> a -> Bool
== Pos
MidPos)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [a]
posns
where
posns :: [a]
posns = (forall s. Space s => s -> Element s
lower Range a
s +) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (a
step *) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. FromIntegral a b => b -> a
fromIntegral forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Int
i0 .. Int
i1]
step :: a
step = forall a. Divisive a => a -> a -> a
(/) (forall s. (Space s, Subtractive (Element s)) => s -> Element s
width Range a
s) (forall a b. FromIntegral a b => b -> a
fromIntegral Grid (Range a)
n)
(Int
i0, Int
i1) = case Pos
o of
Pos
OuterPos -> (Int
0, Grid (Range a)
n)
Pos
InnerPos -> (Int
1, Grid (Range a)
n forall a. Subtractive a => a -> a -> a
- Int
1)
Pos
LowerPos -> (Int
0, Grid (Range a)
n forall a. Subtractive a => a -> a -> a
- Int
1)
Pos
UpperPos -> (Int
1, Grid (Range a)
n)
Pos
MidPos -> (Int
0, Grid (Range a)
n forall a. Subtractive a => a -> a -> a
- Int
1)
gridSpace :: Range a -> Grid (Range a) -> [Range a]
gridSpace Range a
r Grid (Range a)
n = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall a. a -> a -> Range a
Range [Element (Range a)]
ps (forall a. Int -> [a] -> [a]
drop Int
1 [Element (Range a)]
ps)
where
ps :: [Element (Range a)]
ps = forall s. FieldSpace s => Pos -> s -> Grid s -> [Element s]
grid Pos
OuterPos Range a
r Grid (Range a)
n
instance (Ord a) => Semigroup (Range a) where
<> :: Range a -> Range a -> Range a
(<>) Range a
a Range a
b = forall a. Union a -> a
getUnion (forall a. a -> Union a
Union Range a
a forall a. Semigroup a => a -> a -> a
<> forall a. a -> Union a
Union Range a
b)
instance (Additive a, Ord a) => Additive (Range a) where
(Range a
l a
u) + :: Range a -> Range a -> Range a
+ (Range a
l' a
u') = forall s (f :: * -> *).
(Space s, Traversable f) =>
f (Element s) -> s
unsafeSpace1 [a
l forall a. Additive a => a -> a -> a
+ a
l', a
u forall a. Additive a => a -> a -> a
+ a
u']
zero :: Range a
zero = forall a. a -> a -> Range a
Range forall a. Additive a => a
zero forall a. Additive a => a
zero
instance (Subtractive a, Ord a) => Subtractive (Range a) where
negate :: Range a -> Range a
negate (Range a
l a
u) = forall a. Subtractive a => a -> a
negate a
u forall s. Space s => Element s -> Element s -> s
... forall a. Subtractive a => a -> a
negate a
l
instance (Field a, Ord a) => Multiplicative (Range a) where
Range a
a * :: Range a -> Range a -> Range a
* Range a
b = forall a. a -> a -> Bool -> a
bool (forall a. a -> a -> Range a
Range (a
m forall a. Subtractive a => a -> a -> a
- a
r forall a. Divisive a => a -> a -> a
/ (forall a. Multiplicative a => a
one forall a. Additive a => a -> a -> a
+ forall a. Multiplicative a => a
one)) (a
m forall a. Additive a => a -> a -> a
+ a
r forall a. Divisive a => a -> a -> a
/ (forall a. Multiplicative a => a
one forall a. Additive a => a -> a -> a
+ forall a. Multiplicative a => a
one))) forall a. Additive a => a
zero (Range a
a forall a. Eq a => a -> a -> Bool
== forall a. Additive a => a
zero Bool -> Bool -> Bool
|| Range a
b forall a. Eq a => a -> a -> Bool
== forall a. Additive a => a
zero)
where
m :: a
m = forall s. (Space s, Field (Element s)) => s -> Element s
mid Range a
a forall a. Additive a => a -> a -> a
+ forall s. (Space s, Field (Element s)) => s -> Element s
mid Range a
b
r :: a
r = forall s. (Space s, Subtractive (Element s)) => s -> Element s
width Range a
a forall a. Multiplicative a => a -> a -> a
* forall s. (Space s, Subtractive (Element s)) => s -> Element s
width Range a
b
one :: Range a
one = forall a. a -> a -> Range a
Range (forall a. Subtractive a => a -> a
negate forall a. Multiplicative a => a
one forall a. Divisive a => a -> a -> a
/ (forall a. Multiplicative a => a
one forall a. Additive a => a -> a -> a
+ forall a. Multiplicative a => a
one)) (forall a. Multiplicative a => a
one forall a. Divisive a => a -> a -> a
/ (forall a. Multiplicative a => a
one forall a. Additive a => a -> a -> a
+ forall a. Multiplicative a => a
one))
instance (Ord a, Field a) => Divisive (Range a) where
recip :: Range a -> Range a
recip Range a
a = forall a. a -> a -> Bool -> a
bool (forall a. a -> a -> Range a
Range (-Element (Range a)
m forall a. Subtractive a => a -> a -> a
- forall a. Multiplicative a => a
one forall a. Divisive a => a -> a -> a
/ (forall a. (Multiplicative a, Additive a) => a
two forall a. Multiplicative a => a -> a -> a
* Element (Range a)
r)) (-Element (Range a)
m forall a. Additive a => a -> a -> a
+ forall a. Multiplicative a => a
one forall a. Divisive a => a -> a -> a
/ (forall a. (Multiplicative a, Additive a) => a
two forall a. Multiplicative a => a -> a -> a
* Element (Range a)
r))) forall a. Additive a => a
zero (Element (Range a)
r forall a. Eq a => a -> a -> Bool
== forall a. Additive a => a
zero)
where
m :: Element (Range a)
m = forall s. (Space s, Field (Element s)) => s -> Element s
mid Range a
a
r :: Element (Range a)
r = forall s. (Space s, Subtractive (Element s)) => s -> Element s
width Range a
a
instance (Field a, Ord a) => Basis (Range a) where
type Mag (Range a) = Range a
type Base (Range a) = a
basis :: Range a -> Base (Range a)
basis (Range a
l a
u) = forall a. a -> a -> Bool -> a
bool (forall a. Subtractive a => a -> a
negate forall a. Multiplicative a => a
one) forall a. Multiplicative a => a
one (a
u forall a. Ord a => a -> a -> Bool
>= a
l)
magnitude :: Range a -> Mag (Range a)
magnitude (Range a
l a
u) = forall a. a -> a -> Bool -> a
bool (a
u forall s. Space s => Element s -> Element s -> s
... a
l) (a
l forall s. Space s => Element s -> Element s -> s
... a
u) (a
u forall a. Ord a => a -> a -> Bool
>= a
l)
stepSensible :: Pos -> Double -> Int -> Double
stepSensible :: Pos -> Double -> Int -> Double
stepSensible Pos
tp Double
span' Int
n =
Double
step forall a. Additive a => a -> a -> a
+ forall a. a -> a -> Bool -> a
bool Double
0 (Double
step forall a. Divisive a => a -> a -> a
/ Double
2) (Pos
tp forall a. Eq a => a -> a -> Bool
== Pos
MidPos)
where
step' :: Double
step' = Double
10.0 forall b a.
(Ord b, Divisive a, Subtractive b, Integral b) =>
a -> b -> a
^^ forall a. (QuotientField a, Ring (Whole a)) => a -> Whole a
floor (forall a. ExpField a => a -> a -> a
logBase Double
10 (Double
span' forall a. Divisive a => a -> a -> a
/ forall a b. FromIntegral a b => b -> a
fromIntegral Int
n))
err :: Double
err = forall a b. FromIntegral a b => b -> a
fromIntegral Int
n forall a. Divisive a => a -> a -> a
/ Double
span' forall a. Multiplicative a => a -> a -> a
* Double
step'
step :: Double
step
| Double
err forall a. Ord a => a -> a -> Bool
<= Double
0.15 = Double
10.0 forall a. Multiplicative a => a -> a -> a
* Double
step'
| Double
err forall a. Ord a => a -> a -> Bool
<= Double
0.35 = Double
5.0 forall a. Multiplicative a => a -> a -> a
* Double
step'
| Double
err forall a. Ord a => a -> a -> Bool
<= Double
0.75 = Double
2.0 forall a. Multiplicative a => a -> a -> a
* Double
step'
| Bool
otherwise = Double
step'
gridSensible ::
Pos ->
Bool ->
Range Double ->
Int ->
[Double]
gridSensible :: Pos -> Bool -> Range Double -> Int -> [Double]
gridSensible Pos
tp Bool
inside r :: Range Double
r@(Range Double
l Double
u) Int
n =
forall a. a -> a -> Bool -> a
bool forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id (forall a. (a -> Bool) -> [a] -> [a]
filter (forall s. Space s => Element s -> s -> Bool
`memberOf` Range Double
r)) Bool
inside forall a b. (a -> b) -> a -> b
$
(forall a. Additive a => a -> a -> a
+ forall a. a -> a -> Bool -> a
bool Double
0 (Double
step forall a. Divisive a => a -> a -> a
/ Double
2) (Pos
tp forall a. Eq a => a -> a -> Bool
== Pos
MidPos)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Double]
posns
where
posns :: [Double]
posns = (Double
first' +) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (Double
step *) forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. FromIntegral a b => b -> a
fromIntegral forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Int
i0 .. Int
i1]
span' :: Double
span' = Double
u forall a. Subtractive a => a -> a -> a
- Double
l
step :: Double
step = Pos -> Double -> Int -> Double
stepSensible Pos
tp Double
span' Int
n
first' :: Double
first' = Double
step forall a. Multiplicative a => a -> a -> a
* forall a b. FromIntegral a b => b -> a
fromIntegral (forall a. (QuotientField a, Ring (Whole a)) => a -> Whole a
floor (Double
l forall a. Divisive a => a -> a -> a
/ Double
step forall a. Additive a => a -> a -> a
+ Double
1e-6))
last' :: Double
last' = Double
step forall a. Multiplicative a => a -> a -> a
* forall a b. FromIntegral a b => b -> a
fromIntegral (forall a. (QuotientField a, Distributive (Whole a)) => a -> Whole a
ceiling (Double
u forall a. Divisive a => a -> a -> a
/ Double
step forall a. Subtractive a => a -> a -> a
- Double
1e-6))
n' :: Whole Double
n' = forall a.
(QuotientField a, Eq (Whole a), Ring (Whole a)) =>
a -> Whole a
round ((Double
last' forall a. Subtractive a => a -> a -> a
- Double
first') forall a. Divisive a => a -> a -> a
/ Double
step)
(Int
i0, Int
i1) =
case Pos
tp of
Pos
OuterPos -> (Int
0, Whole Double
n')
Pos
InnerPos -> (Int
1, Whole Double
n' forall a. Subtractive a => a -> a -> a
- Int
1)
Pos
LowerPos -> (Int
0, Whole Double
n' forall a. Subtractive a => a -> a -> a
- Int
1)
Pos
UpperPos -> (Int
1, Whole Double
n')
Pos
MidPos -> (Int
0, Whole Double
n' forall a. Subtractive a => a -> a -> a
- Int
1)