oalg-base-1.1.4.0: Algebraic structures on oriented entities and limits as a tool kit to solve algebraic problems.
Copyright(c) Erich Gut
LicenseBSD3
Maintainerzerich.gut@gmail.com
Safe HaskellSafe-Inferred
LanguageHaskell2010

OAlg.Category.Applicative

Contents

Description

application on values.

Synopsis

Applicative

class Applicative h where Source #

family of types having a representation in (->).

Methods

amap :: h a b -> a -> b Source #

application.

Instances

Instances details
Applicative GLApp Source # 
Instance details

Defined in OAlg.Entity.Matrix.GeneralLinearGroup

Methods

amap :: GLApp a b -> a -> b Source #

Applicative TrApp Source # 
Instance details

Defined in OAlg.Entity.Matrix.GeneralLinearGroup

Methods

amap :: TrApp a b -> a -> b Source #

Applicative m => Applicative (Path m) Source # 
Instance details

Defined in OAlg.Category.Path

Methods

amap :: Path m a b -> a -> b Source #

(Semiring r, Commutative r) => Applicative (HomSymbol r) Source # 
Instance details

Defined in OAlg.Entity.Matrix.Vector

Methods

amap :: HomSymbol r a b -> a -> b Source #

Applicative (SliceFactorDrop s) Source # 
Instance details

Defined in OAlg.Entity.Slice.Definition

Methods

amap :: SliceFactorDrop s a b -> a -> b Source #

ForgetfulOrt s => Applicative (HomOp s) Source # 
Instance details

Defined in OAlg.Hom.Oriented.Definition

Methods

amap :: HomOp s a b -> a -> b Source #

Applicative (IdHom s) Source # 
Instance details

Defined in OAlg.Hom.Oriented.Definition

Methods

amap :: IdHom s a b -> a -> b Source #

ForgetfulOrt s => Applicative (IsoOp s) Source # 
Instance details

Defined in OAlg.Hom.Oriented.Definition

Methods

amap :: IsoOp s a b -> a -> b Source #

Applicative h => Applicative (OpHom h) Source # 
Instance details

Defined in OAlg.Hom.Oriented.Definition

Methods

amap :: OpHom h a b -> a -> b Source #

Applicative m => Applicative (Forget t m) Source # 
Instance details

Defined in OAlg.Category.Definition

Methods

amap :: Forget t m a b -> a -> b Source #

(Applicative f, Applicative g) => Applicative (Either2 f g) Source # 
Instance details

Defined in OAlg.Category.Applicative

Methods

amap :: Either2 f g a b -> a -> b Source #

(Distributive c, SliceCokernelTo i c, SliceKernelFrom i c) => Applicative (SliceCokernelKernel i c) Source # 
Instance details

Defined in OAlg.Entity.Slice.Adjunction

Methods

amap :: SliceCokernelKernel i c a b -> a -> b Source #

ForgetfulDst s => Applicative (IsoOpMap Matrix s) Source # 
Instance details

Defined in OAlg.Entity.Matrix.Definition

Methods

amap :: IsoOpMap Matrix s a b -> a -> b Source #

ForgetfulOrt s => Applicative (IsoOpMap Path s) Source # 
Instance details

Defined in OAlg.Hom.Oriented.Definition

Methods

amap :: IsoOpMap Path s a b -> a -> b Source #

ForgetfulDst s => Applicative (OpMap Matrix s) Source # 
Instance details

Defined in OAlg.Entity.Matrix.Definition

Methods

amap :: OpMap Matrix s a b -> a -> b Source #

ForgetfulOrt s => Applicative (OpMap Path s) Source # 
Instance details

Defined in OAlg.Hom.Oriented.Definition

Methods

amap :: OpMap Path s a b -> a -> b Source #

Applicative (->) Source # 
Instance details

Defined in OAlg.Category.Applicative

Methods

amap :: (a -> b) -> a -> b Source #

($) :: Applicative h => h a b -> a -> b infixr 0 Source #

right associative application on values.

class Applicative1 h f where Source #

family of types having a representation in f a -> f b.

Methods

amap1 :: h a b -> f a -> f b Source #

application.

Instances

Instances details
HomDistributive h => Applicative1 h Matrix Source # 
Instance details

Defined in OAlg.Entity.Matrix.Definition

Methods

amap1 :: h a b -> Matrix a -> Matrix b Source #

HomOriented h => Applicative1 h (Diagram t n m) Source # 
Instance details

Defined in OAlg.Entity.Diagram.Definition

Methods

amap1 :: h a b -> Diagram t n m a -> Diagram t n m b Source #

HomDistributive h => Applicative1 h (Cone Dst p t n m) Source # 
Instance details

Defined in OAlg.Limes.Cone.Definition

Methods

amap1 :: h a b -> Cone Dst p t n m a -> Cone Dst p t n m b Source #

HomMultiplicative h => Applicative1 h (Cone Mlt p t n m) Source # 
Instance details

Defined in OAlg.Limes.Cone.Definition

Methods

amap1 :: h a b -> Cone Mlt p t n m a -> Cone Mlt p t n m b Source #

IsoMultiplicative h => Applicative1 h (Limes Mlt p t n m) Source # 
Instance details

Defined in OAlg.Limes.Definition

Methods

amap1 :: h a b -> Limes Mlt p t n m a -> Limes Mlt p t n m b Source #

IsoDistributive h => Applicative1 h (Limits Dst p t n m) Source # 
Instance details

Defined in OAlg.Limes.Limits

Methods

amap1 :: h a b -> Limits Dst p t n m a -> Limits Dst p t n m b Source #

IsoMultiplicative h => Applicative1 h (Limits Mlt p t n m) Source # 
Instance details

Defined in OAlg.Limes.Limits

Methods

amap1 :: h a b -> Limits Mlt p t n m a -> Limits Mlt p t n m b Source #

Functor f => Applicative1 (->) f Source # 
Instance details

Defined in OAlg.Category.Applicative

Methods

amap1 :: (a -> b) -> f a -> f b Source #