one-liner-1.0: Constraint-based generics

LicenseBSD-style (see the file LICENSE)
Maintainersjoerd@w3future.com
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell98

Generics.OneLiner.Internal

Description

 

Synopsis

Documentation

type family Constraints' (t :: * -> *) (t' :: * -> *) (c :: * -> * -> Constraint) (c1 :: (* -> *) -> (* -> *) -> Constraint) :: Constraint Source #

Instances

type Constraints' Par1 Par1 c c1 Source # 
type Constraints' Par1 Par1 c c1 = ()
type Constraints' (V1 *) (V1 *) c c1 Source # 
type Constraints' (V1 *) (V1 *) c c1 = ()
type Constraints' (U1 *) (U1 *) c c1 Source # 
type Constraints' (U1 *) (U1 *) c c1 = ()
type Constraints' (Rec1 * f) (Rec1 * g) c c1 Source # 
type Constraints' (Rec1 * f) (Rec1 * g) c c1 = c1 f g
type Constraints' (K1 * i a) (K1 * i' b) c c1 Source # 
type Constraints' (K1 * i a) (K1 * i' b) c c1 = c a b
type Constraints' ((:+:) * f g) ((:+:) * f' g') c c1 Source # 
type Constraints' ((:+:) * f g) ((:+:) * f' g') c c1 = (Constraints' f f' c c1, Constraints' g g' c c1)
type Constraints' ((:*:) * f g) ((:*:) * f' g') c c1 Source # 
type Constraints' ((:*:) * f g) ((:*:) * f' g') c c1 = (Constraints' f f' c c1, Constraints' g g' c c1)
type Constraints' (M1 * i t f) (M1 * i' t' f') c c1 Source # 
type Constraints' (M1 * i t f) (M1 * i' t' f') c c1 = Constraints' f f' c c1
type Constraints' ((:.:) * * f g) ((:.:) * * f' g') c c1 Source # 
type Constraints' ((:.:) * * f g) ((:.:) * * f' g') c c1 = (c1 f f', Constraints' g g' c c1)

type family Satisfies (p :: * -> * -> *) (ks :: [(* -> * -> *) -> Constraint]) :: Constraint Source #

Instances

type Satisfies p ([] ((* -> * -> *) -> Constraint)) Source # 
type Satisfies p ([] ((* -> * -> *) -> Constraint)) = ()
type Satisfies p ((:) ((* -> * -> *) -> Constraint) k ks) Source # 
type Satisfies p ((:) ((* -> * -> *) -> Constraint) k ks) = (k p, Satisfies p ks)

class (ks :: [(* -> * -> *) -> Constraint]) |- (k :: (* -> * -> *) -> Constraint) where Source #

Minimal complete definition

(|-)

Methods

(|-) :: Satisfies p ks => proxy0 ks -> proxy1 k -> (k p => p a b) -> p a b Source #

Instances

((:) ((* -> * -> *) -> Constraint) k _ks) |- k Source # 

Methods

(|-) :: Satisfies p ((((* -> * -> *) -> Constraint) ': k) _ks) => proxy0 ((((* -> * -> *) -> Constraint) ': k) _ks) -> proxy1 k -> (k p -> p a b) -> p a b Source #

(|-) ks k => ((:) ((* -> * -> *) -> Constraint) _k ks) |- k Source # 

Methods

(|-) :: Satisfies p ((((* -> * -> *) -> Constraint) ': _k) ks) => proxy0 ((((* -> * -> *) -> Constraint) ': _k) ks) -> proxy1 k -> (k p -> p a b) -> p a b Source #

generic' :: forall t t' c p ks a b proxy0 for. (ADT_ Identity Proxy ks t t', Constraints' t t' c AnyType, Satisfies p ks) => proxy0 ks -> for c -> (forall s s'. c s s' => p s s') -> p (t a) (t' b) Source #

generic1' :: forall t t' c1 p ks a b proxy0 for. (ADT_ Proxy Identity ks t t', Constraints' t t' AnyType c1, Satisfies p ks) => proxy0 ks -> for c1 -> (forall s s' d e. c1 s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

generic01' :: forall t t' c0 c1 p ks a b proxy0 for for1. (ADT_ Identity Identity ks t t', Constraints' t t' c0 c1, Satisfies p ks) => proxy0 ks -> for c0 -> (forall s s'. c0 s s' => p s s') -> for1 c1 -> (forall s s' d e. c1 s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

class ADT_ (nullary :: * -> *) (unary :: * -> *) (ks :: [(* -> * -> *) -> Constraint]) (t :: * -> *) (t' :: * -> *) where Source #

Minimal complete definition

generic_

Methods

generic_ :: (Constraints' t t' c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall r1 s1 d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p (t a) (t' b) Source #

Instances

(|-) ks Profunctor => ADT_ nullary Identity ks Par1 Par1 Source # 

Methods

generic_ :: (Constraints' Par1 Par1 c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => Identity (p d e -> p (r1 d) (s1 e))) -> Identity (p a b) -> p (Par1 a) (Par1 b) Source #

(|-) ks GenericUnitProfunctor => ADT_ nullary unary ks (U1 *) (U1 *) Source # 

Methods

generic_ :: (Constraints' (U1 *) (U1 *) c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p (U1 * a) (U1 * b) Source #

(|-) ks GenericEmptyProfunctor => ADT_ nullary unary ks (V1 *) (V1 *) Source # 

Methods

generic_ :: (Constraints' (V1 *) (V1 *) c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p (V1 * a) (V1 * b) Source #

(|-) ks Profunctor => ADT_ nullary Identity ks (Rec1 * f) (Rec1 * f') Source # 

Methods

generic_ :: (Constraints' (Rec1 * f) (Rec1 * f') c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => Identity (p d e -> p (r1 d) (s1 e))) -> Identity (p a b) -> p (Rec1 * f a) (Rec1 * f' b) Source #

((|-) ks GenericProductProfunctor, ADT_ nullary unary ks f f', ADT_ nullary unary ks g g') => ADT_ nullary unary ks ((:*:) * f g) ((:*:) * f' g') Source # 

Methods

generic_ :: (Constraints' ((* :*: f) g) ((* :*: f') g') c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p ((* :*: f) g a) ((* :*: f') g' b) Source #

((|-) ks GenericSumProfunctor, ADT_ nullary unary ks f f', ADT_ nullary unary ks g g') => ADT_ nullary unary ks ((:+:) * f g) ((:+:) * f' g') Source # 

Methods

generic_ :: (Constraints' ((* :+: f) g) ((* :+: f') g') c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p ((* :+: f) g a) ((* :+: f') g' b) Source #

(|-) ks Profunctor => ADT_ Identity unary ks (K1 * i v) (K1 * i' v') Source # 

Methods

generic_ :: (Constraints' (K1 * i v) (K1 * i' v') c c1, Satisfies p ks) => proxy0 ks -> proxy1 Identity -> for c -> (forall s s'. c s s' => Identity (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p (K1 * i v a) (K1 * i' v' b) Source #

((|-) ks Profunctor, ADT_ nullary Identity ks g g') => ADT_ nullary Identity ks ((:.:) * * f g) ((:.:) * * f' g') Source # 

Methods

generic_ :: (Constraints' ((* :.: *) f g) ((* :.: *) f' g') c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => Identity (p d e -> p (r1 d) (s1 e))) -> Identity (p a b) -> p ((* :.: *) f g a) ((* :.: *) f' g' b) Source #

((|-) ks Profunctor, ADT_ nullary unary ks f f') => ADT_ nullary unary ks (M1 * i c f) (M1 * i' c' f') Source # 

Methods

generic_ :: (Constraints' (M1 * i c f) (M1 * i' c' f') c c1, Satisfies p ks) => proxy0 ks -> proxy1 nullary -> for c -> (forall s s'. c s s' => nullary (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p (M1 * i c f a) (M1 * i' c' f' b) Source #

(|-) ks GenericEmptyProfunctor => ADT_ (Proxy *) unary ks (K1 * i v) (K1 * i' v) Source # 

Methods

generic_ :: (Constraints' (K1 * i v) (K1 * i' v) c c1, Satisfies p ks) => proxy0 ks -> proxy1 (Proxy *) -> for c -> (forall s s'. c s s' => Proxy * (p s s')) -> for1 c1 -> (forall (r1 :: * -> *) (s1 :: * -> *) d e. c1 r1 s1 => unary (p d e -> p (r1 d) (s1 e))) -> unary (p a b) -> p (K1 * i v a) (K1 * i' v b) Source #

data Ctor a b Source #

Constructors

Ctor 

Fields

Instances

Profunctor (Ctor *) Source # 

Methods

dimap :: (a -> b) -> (c -> d) -> Ctor * b c -> Ctor * a d #

lmap :: (a -> b) -> Ctor * b c -> Ctor * a c #

rmap :: (b -> c) -> Ctor * a b -> Ctor * a c #

(#.) :: Coercible * c b => (b -> c) -> Ctor * a b -> Ctor * a c #

(.#) :: Coercible * b a => Ctor * b c -> (a -> b) -> Ctor * a c #

GenericEmptyProfunctor (Ctor *) Source # 

Methods

identity :: Ctor * a a Source #

zero :: Ctor * (V1 * a) (V1 * a') Source #

GenericSumProfunctor (Ctor *) Source # 

Methods

plus :: Ctor * (f a) (f' a') -> Ctor * (g a) (g' a') -> Ctor * ((* :+: f) g a) ((* :+: f') g' a') Source #

GenericProductProfunctor (Ctor *) Source # 

Methods

mult :: Ctor * (f a) (f' a') -> Ctor * (g a) (g' a') -> Ctor * ((* :*: f) g a) ((* :*: f') g' a') Source #

GenericUnitProfunctor (Ctor *) Source # 

Methods

unit :: Ctor * (U1 * a) (U1 * a') Source #

record :: forall c p t t'. (ADTRecord t t', Constraints t t' c, GenericRecordProfunctor p) => (forall s s'. c s s' => p s s') -> p t t' Source #

record1 :: forall c p t t' a b. (ADTRecord1 t t', Constraints1 t t' c, GenericRecordProfunctor p) => (forall d e s s'. c s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

record01 :: forall c0 c1 p t t' a b. (ADTRecord1 t t', Constraints01 t t' c0 c1, GenericRecordProfunctor p) => (forall s s'. c0 s s' => p s s') -> (forall d e s s'. c1 s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

nonEmpty :: forall c p t t'. (ADTNonEmpty t t', Constraints t t' c, GenericNonEmptyProfunctor p) => (forall s s'. c s s' => p s s') -> p t t' Source #

nonEmpty1 :: forall c p t t' a b. (ADTNonEmpty1 t t', Constraints1 t t' c, GenericNonEmptyProfunctor p) => (forall d e s s'. c s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

nonEmpty01 :: forall c0 c1 p t t' a b. (ADTNonEmpty1 t t', Constraints01 t t' c0 c1, GenericNonEmptyProfunctor p) => (forall s s'. c0 s s' => p s s') -> (forall d e s s'. c1 s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

generic :: forall c p t t'. (ADT t t', Constraints t t' c, GenericProfunctor p) => (forall s s'. c s s' => p s s') -> p t t' Source #

generic1 :: forall c p t t' a b. (ADT1 t t', Constraints1 t t' c, GenericProfunctor p) => (forall d e s s'. c s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

generic01 :: forall c0 c1 p t t' a b. (ADT1 t t', Constraints01 t t' c0 c1, GenericProfunctor p) => (forall s s'. c0 s s' => p s s') -> (forall d e s s'. c1 s s' => p d e -> p (s d) (s' e)) -> p a b -> p (t a) (t' b) Source #

type Constraints t t' c = Constraints' (Rep t) (Rep t') c AnyType Source #

Constraints is a constraint type synonym, containing the constraint requirements for an instance for t of class c. It requires an instance of class c for each component of t.

type Constraints1 t t' c = Constraints' (Rep1 t) (Rep1 t') AnyType c Source #

type Constraints01 t t' c0 c1 = Constraints' (Rep1 t) (Rep1 t') c0 c1 Source #

type ADTRecord t t' = (Generic t, Generic t', ADTRecord' (Rep t) (Rep t'), Constraints t t' AnyType) Source #

ADTRecord is a constraint type synonym. An instance is an ADT with *exactly* one constructor.

type ADTNonEmpty t t' = (Generic t, Generic t', ADTNonEmpty' (Rep t) (Rep t'), Constraints t t' AnyType) Source #

ADTNonEmpty is a constraint type synonym. An instance is an ADT with *at least* one constructor.

type ADT t t' = (Generic t, Generic t', ADT' (Rep t) (Rep t'), Constraints t t' AnyType) Source #

ADT is a constraint type synonym. The Generic instance can be derived, and any generic representation will be an instance of ADT' and AnyType.

type ADT1 t t' = (Generic1 t, Generic1 t', ADT1' (Rep1 t) (Rep1 t'), Constraints1 t t' AnyType) Source #

class AnyType a b Source #

Instances

AnyType k2 k1 a b Source # 

type family FunResult t where ... Source #

The result type of a curried function.

If r is not a function type (i.e., does not unify with `_ -> _`):

FunResult (a -> r) ~ r
FunResult (a -> b -> r) ~ r
FunResult (a -> b -> c -> r) ~ r

Equations

FunResult (a -> b) = FunResult b 
FunResult r = r 

class FunConstraints c t where Source #

Automatically apply a lifted function to a polymorphic argument as many times as possible.

A constraint `FunConstraint c t` is equivalent to the conjunction of constraints `c s` for every argument type of t.

If r is not a function type:

c a :- FunConstraints c (a -> r)
(c a, c b) :- FunConstraints c (a -> b -> r)
(c a, c b, c d) :- FunConstraints c (a -> b -> d -> r)

Minimal complete definition

autoApply

Methods

autoApply :: Applicative f => (forall s. c s => f s) -> f t -> f (FunResult t) Source #

Instances

(~) * (FunResult r) r => FunConstraints c r Source # 

Methods

autoApply :: Applicative f => (forall s. c s => f s) -> f r -> f (FunResult r) Source #

(c a, FunConstraints c b) => FunConstraints c (a -> b) Source # 

Methods

autoApply :: Applicative f => (forall s. c s => f s) -> f (a -> b) -> f (FunResult (a -> b)) Source #

data Pair a Source #

Constructors

Pair a a 

Instances

Functor Pair Source # 

Methods

fmap :: (a -> b) -> Pair a -> Pair b #

(<$) :: a -> Pair b -> Pair a #

(.:) :: (c -> d) -> (a -> b -> c) -> a -> b -> d infixr 9 Source #