-- | -- Module: Optics.AffineTraversal -- Description: A 'Optics.Traversal.Traversal' that applies to at most one element. -- -- An 'AffineTraversal' is a 'Optics.Traversal.Traversal' that -- applies to at most one element. -- -- These arise most frequently as the composition of a -- 'Optics.Lens.Lens' with a 'Optics.Prism.Prism'. -- module Optics.AffineTraversal ( -- * Formation AffineTraversal , AffineTraversal' -- * Introduction , atraversal -- * Elimination -- | An 'AffineTraversal' is in particular an 'Optics.AffineFold.AffineFold' -- and a 'Optics.Setter.Setter', therefore you can specialise types to obtain: -- -- @ -- 'Optics.AffineFold.preview' :: 'AffineTraversal' s t a b -> s -> Maybe a -- @ -- -- @ -- 'Optics.Setter.over' :: 'AffineTraversal' s t a b -> (a -> b) -> s -> t -- 'Optics.Setter.set' :: 'AffineTraversal' s t a b -> b -> s -> t -- @ , matching -- * Computation -- | -- -- @ -- 'matching' ('atraversal' f g) ≡ f -- 'Data.Either.isRight' (f s) => 'Optics.Setter.set' ('atraversal' f g) b s ≡ g s b -- @ -- * Additional introduction forms -- | See 'Optics.Cons.Core._head', 'Optics.Cons.Core._tail', -- 'Optics.Cons.Core._init' and 'Optics.Cons.Core._last' for -- 'AffineTraversal's for container types. , unsafeFiltered -- * Additional elimination forms , withAffineTraversal -- * Subtyping , An_AffineTraversal -- | <<diagrams/AffineTraversal.png AffineTraversal in the optics hierarchy>> -- * van Laarhoven encoding , AffineTraversalVL , AffineTraversalVL' , atraversalVL , atraverseOf ) where import Data.Profunctor.Indexed import Optics.Internal.Optic -- | Type synonym for a type-modifying affine traversal. type AffineTraversal s t a b = Optic An_AffineTraversal NoIx s t a b -- | Type synonym for a type-preserving affine traversal. type AffineTraversal' s a = Optic' An_AffineTraversal NoIx s a -- | Type synonym for a type-modifying van Laarhoven affine traversal. -- -- Note: this isn't exactly van Laarhoven representation as there is -- no @Pointed@ class (which would be a superclass of 'Applicative' -- that contains 'pure' but not '<*>'). You can interpret the first -- argument as a dictionary of @Pointed@ that supplies the @point@ -- function (i.e. the implementation of 'pure'). -- -- A 'Optics.Traversal.TraversalVL' has 'Applicative' available and -- hence can combine the effects arising from multiple elements using -- '<*>'. In contrast, an 'AffineTraversalVL' has no way to combine -- effects from multiple elements, so it must act on at most one -- element. (It can act on none at all thanks to the availability of -- @point@.) -- type AffineTraversalVL s t a b = forall f. Functor f => (forall r. r -> f r) -> (a -> f b) -> s -> f t -- | Type synonym for a type-preserving van Laarhoven affine traversal. type AffineTraversalVL' s a = AffineTraversalVL s s a a -- | Build an affine traversal from a matcher and an updater. -- -- If you want to build an 'AffineTraversal' from the van Laarhoven -- representation, use 'atraversalVL'. atraversal :: (s -> Either t a) -> (s -> b -> t) -> AffineTraversal s t a b atraversal match update = Optic $ -- Do not define atraversal in terms of atraversalVL, mixing profunctor-style -- definitions with VL style implementation can lead to subpar generated code. dimap (\s -> (match s, update s)) (\(etb, f) -> either id f etb) . first' . right' {-# INLINE atraversal #-} -- | Work with an affine traversal as a matcher and an updater. withAffineTraversal :: Is k An_AffineTraversal => Optic k is s t a b -> ((s -> Either t a) -> (s -> b -> t) -> r) -> r withAffineTraversal o = \k -> case getOptic (castOptic @An_AffineTraversal o) (AffineMarket (\_ b -> b) Right) of AffineMarket update match -> k match update {-# INLINE withAffineTraversal #-} -- | Build an affine traversal from the van Laarhoven representation. -- -- Example: -- -- >>> :{ -- azSnd = atraversalVL $ \point f ab@(a, b) -> -- if a >= 'a' && a <= 'z' -- then (a, ) <$> f b -- else point ab -- :} -- -- >>> preview azSnd ('a', "Hi") -- Just "Hi" -- -- >>> preview azSnd ('@', "Hi") -- Nothing -- -- >>> over azSnd (++ "!!!") ('f', "Hi") -- ('f',"Hi!!!") -- -- >>> set azSnd "Bye" ('Y', "Hi") -- ('Y',"Hi") -- atraversalVL :: AffineTraversalVL s t a b -> AffineTraversal s t a b atraversalVL f = Optic (visit f) {-# INLINE atraversalVL #-} -- | Traverse over the target of an 'AffineTraversal' and compute a -- 'Functor'-based answer. -- -- @since 0.3 atraverseOf :: (Is k An_AffineTraversal, Functor f) => Optic k is s t a b -> (forall r. r -> f r) -> (a -> f b) -> s -> f t atraverseOf o point = runStarA . getOptic (castOptic @An_AffineTraversal o) . StarA point {-# INLINE atraverseOf #-} -- | Retrieve the value targeted by an 'AffineTraversal' or return the original -- value while allowing the type to change if it does not match. -- -- @ -- 'Optics.AffineFold.preview' o ≡ 'either' ('const' 'Nothing') 'id' . 'matching' o -- @ matching :: Is k An_AffineTraversal => Optic k is s t a b -> s -> Either t a matching o = withAffineTraversal o $ \match _ -> match {-# INLINE matching #-} -- | Filter result(s) of a traversal that don't satisfy a predicate. -- -- /Note:/ This is /not/ a legal 'Optics.Traversal.Traversal', unless you are -- very careful not to invalidate the predicate on the target. -- -- As a counter example, consider that given @evens = 'unsafeFiltered' 'even'@ -- the second 'Optics.Traversal.Traversal' law is violated: -- -- @ -- 'Optics.Setter.over' evens 'succ' '.' 'Optics.over' evens 'succ' '/=' 'Optics.Setter.over' evens ('succ' '.' 'succ') -- @ -- -- So, in order for this to qualify as a legal 'Optics.Traversal.Traversal' you -- can only use it for actions that preserve the result of the predicate! -- -- For a safe variant see 'Optics.IxTraversal.indices' (or -- 'Optics.AffineFold.filtered' for read-only optics). -- unsafeFiltered :: (a -> Bool) -> AffineTraversal' a a unsafeFiltered p = atraversalVL (\point f a -> if p a then f a else point a) {-# INLINE unsafeFiltered #-} -- $setup -- >>> import Optics.Core