{-# LANGUAGE CPP #-}
module Language.Haskell.TH.Optics.Internal
(
HasTypeVars(..)
, typeVars
, typeVarsKinded
, substTypeVars
, SubstType(..)
, _FamilyI
, _ClosedTypeFamilyD
, _OpenTypeFamilyD
, _ForallT
, TyVarBndrSpec
) where
import Data.Map as Map hiding (map, toList)
import Data.Maybe (fromMaybe)
import Data.Foldable (traverse_)
import Data.Set as Set hiding (map, toList)
import Language.Haskell.TH
import Language.Haskell.TH.Datatype.TyVarBndr
import Data.Set.Optics
import Optics.Core
class HasName t where
name :: Lens' t Name
instance HasName (TyVarBndr_ flag) where
name :: Lens' (TyVarBndr_ flag) Name
name = LensVL (TyVarBndr_ flag) (TyVarBndr_ flag) Name Name
-> Lens' (TyVarBndr_ flag) Name
forall s t a b. LensVL s t a b -> Lens s t a b
lensVL (LensVL (TyVarBndr_ flag) (TyVarBndr_ flag) Name Name
-> Lens' (TyVarBndr_ flag) Name)
-> LensVL (TyVarBndr_ flag) (TyVarBndr_ flag) Name Name
-> Lens' (TyVarBndr_ flag) Name
forall a b. (a -> b) -> a -> b
$ \Name -> f Name
f -> \case
#if MIN_VERSION_template_haskell(2,17,0)
PlainTV n flag -> (\n' -> PlainTV n' flag) <$> f n
KindedTV n flag k -> (\n' -> KindedTV n' flag k ) <$> f n
#else
PlainTV n -> Name -> TyVarBndr_ flag
PlainTV (Name -> TyVarBndr_ flag) -> f Name -> f (TyVarBndr_ flag)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Name -> f Name
f Name
n
KindedTV n k -> (Name -> Kind -> TyVarBndr_ flag
`KindedTV` Kind
k) (Name -> TyVarBndr_ flag) -> f Name -> f (TyVarBndr_ flag)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Name -> f Name
f Name
n
#endif
class HasTypeVars t where
typeVarsEx :: Set Name -> Traversal' t Name
instance HasTypeVars (TyVarBndr_ flag) where
typeVarsEx :: Set Name -> Traversal' (TyVarBndr_ flag) Name
typeVarsEx Set Name
s = TraversalVL (TyVarBndr_ flag) (TyVarBndr_ flag) Name Name
-> Traversal' (TyVarBndr_ flag) Name
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL (TyVarBndr_ flag) (TyVarBndr_ flag) Name Name
-> Traversal' (TyVarBndr_ flag) Name)
-> TraversalVL (TyVarBndr_ flag) (TyVarBndr_ flag) Name Name
-> Traversal' (TyVarBndr_ flag) Name
forall a b. (a -> b) -> a -> b
$ \Name -> f Name
f TyVarBndr_ flag
b ->
if Lens' (TyVarBndr_ flag) Name -> TyVarBndr_ flag -> Name
forall k (is :: IxList) s a.
Is k A_Getter =>
Optic' k is s a -> s -> a
view Lens' (TyVarBndr_ flag) Name
forall t. HasName t => Lens' t Name
name TyVarBndr_ flag
b Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` Set Name
s
then TyVarBndr_ flag -> f (TyVarBndr_ flag)
forall (f :: * -> *) a. Applicative f => a -> f a
pure TyVarBndr_ flag
b
else Lens' (TyVarBndr_ flag) Name
-> (Name -> f Name) -> TyVarBndr_ flag -> f (TyVarBndr_ flag)
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf Lens' (TyVarBndr_ flag) Name
forall t. HasName t => Lens' t Name
name Name -> f Name
f TyVarBndr_ flag
b
instance HasTypeVars Name where
typeVarsEx :: Set Name -> Traversal' Name Name
typeVarsEx Set Name
s = TraversalVL Name Name Name Name -> Traversal' Name Name
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL Name Name Name Name -> Traversal' Name Name)
-> TraversalVL Name Name Name Name -> Traversal' Name Name
forall a b. (a -> b) -> a -> b
$ \Name -> f Name
f Name
n ->
if Name
n Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` Set Name
s
then Name -> f Name
forall (f :: * -> *) a. Applicative f => a -> f a
pure Name
n
else Name -> f Name
f Name
n
instance HasTypeVars Type where
typeVarsEx :: Set Name -> Traversal' Kind Name
typeVarsEx Set Name
s = TraversalVL Kind Kind Name Name -> Traversal' Kind Name
forall s t a b. TraversalVL s t a b -> Traversal s t a b
traversalVL (TraversalVL Kind Kind Name Name -> Traversal' Kind Name)
-> TraversalVL Kind Kind Name Name -> Traversal' Kind Name
forall a b. (a -> b) -> a -> b
$ \Name -> f Name
f -> \case
VarT n -> Name -> Kind
VarT (Name -> Kind) -> f Name -> f Kind
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Name Name -> (Name -> f Name) -> Name -> f Name
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Name Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Name
n
AppT l r -> Kind -> Kind -> Kind
AppT (Kind -> Kind -> Kind) -> f Kind -> f (Kind -> Kind)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
l
f (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
r
SigT t k -> Kind -> Kind -> Kind
SigT (Kind -> Kind -> Kind) -> f Kind -> f (Kind -> Kind)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t
f (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
k
ForallT bs ctx ty -> let s' :: Set Name
s' = Set Name
s Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
`Set.union` Optic' A_Traversal NoIx [TyVarBndr_ flag] Name
-> [TyVarBndr_ flag] -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic' A_Traversal NoIx [TyVarBndr_ flag] Name
forall t. HasTypeVars t => Traversal' t Name
typeVars [TyVarBndr_ flag]
bs
in [TyVarBndr_ flag] -> Cxt -> Kind -> Kind
ForallT [TyVarBndr_ flag]
bs (Cxt -> Kind -> Kind) -> f Cxt -> f (Kind -> Kind)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Optic A_Traversal NoIx Cxt Cxt Name Name
-> (Name -> f Name) -> Cxt -> f Cxt
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Optic A_Traversal NoIx Cxt Cxt Name Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s') Name -> f Name
f Cxt
ctx
f (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s') Name -> f Name
f Kind
ty
InfixT t1 n t2 -> Kind -> Name -> Kind -> Kind
InfixT (Kind -> Name -> Kind -> Kind)
-> f Kind -> f (Name -> Kind -> Kind)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t1
f (Name -> Kind -> Kind) -> f Name -> f (Kind -> Kind)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Name -> f Name
forall (f :: * -> *) a. Applicative f => a -> f a
pure Name
n
f (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t2
UInfixT t1 n t2 -> Kind -> Name -> Kind -> Kind
UInfixT (Kind -> Name -> Kind -> Kind)
-> f Kind -> f (Name -> Kind -> Kind)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t1
f (Name -> Kind -> Kind) -> f Name -> f (Kind -> Kind)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Name -> f Name
forall (f :: * -> *) a. Applicative f => a -> f a
pure Name
n
f (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t2
ParensT t -> Kind -> Kind
ParensT (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t
#if MIN_VERSION_template_haskell(2,15,0)
AppKindT t k -> Kind -> Kind -> Kind
AppKindT (Kind -> Kind -> Kind) -> f Kind -> f (Kind -> Kind)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t
f (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
k
ImplicitParamT n t -> String -> Kind -> Kind
ImplicitParamT String
n (Kind -> Kind) -> f Kind -> f Kind
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Traversal' Kind Name -> (Name -> f Name) -> Kind -> f Kind
forall k (f :: * -> *) (is :: IxList) s t a b.
(Is k A_Traversal, Applicative f) =>
Optic k is s t a b -> (a -> f b) -> s -> f t
traverseOf (Set Name -> Traversal' Kind Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s) Name -> f Name
f Kind
t
#endif
Kind
t -> Kind -> f Kind
forall (f :: * -> *) a. Applicative f => a -> f a
pure Kind
t
instance HasTypeVars t => HasTypeVars [t] where
typeVarsEx :: Set Name -> Traversal' [t] Name
typeVarsEx Set Name
s = Traversal [t] [t] t t
forall (t :: * -> *) a b.
Traversable t =>
Traversal (t a) (t b) a b
traversed Traversal [t] [t] t t
-> Optic A_Traversal NoIx t t Name Name -> Traversal' [t] Name
forall k l m (is :: IxList) (js :: IxList) (ks :: IxList) s t u v a
b.
(JoinKinds k l m, AppendIndices is js ks) =>
Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
% Set Name -> Optic A_Traversal NoIx t t Name Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
s
typeVars :: HasTypeVars t => Traversal' t Name
typeVars :: Traversal' t Name
typeVars = Set Name -> Traversal' t Name
forall t. HasTypeVars t => Set Name -> Traversal' t Name
typeVarsEx Set Name
forall a. Monoid a => a
mempty
typeVarsKinded :: Fold Type Type
typeVarsKinded :: Fold Kind Kind
typeVarsKinded = (forall (f :: * -> *).
Applicative f =>
(Kind -> f ()) -> Kind -> f ())
-> Fold Kind Kind
forall a u s v.
(forall (f :: * -> *). Applicative f => (a -> f u) -> s -> f v)
-> Fold s a
foldVL ((forall (f :: * -> *).
Applicative f =>
(Kind -> f ()) -> Kind -> f ())
-> Fold Kind Kind)
-> (forall (f :: * -> *).
Applicative f =>
(Kind -> f ()) -> Kind -> f ())
-> Fold Kind Kind
forall a b. (a -> b) -> a -> b
$ Set Name -> (Kind -> f ()) -> Kind -> f ()
forall (f :: * -> *).
Applicative f =>
Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
forall a. Monoid a => a
mempty
where
go :: Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f = \case
var :: Kind
var@(VarT Name
n) -> if Name
n Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` Set Name
s then () -> f ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure () else Kind -> f ()
f Kind
var
var :: Kind
var@(SigT (VarT Name
n) Kind
_) -> if Name
n Name -> Set Name -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` Set Name
s then () -> f ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure () else Kind -> f ()
f Kind
var
AppT Kind
l Kind
r -> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
l f () -> f () -> f ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
r
SigT Kind
t Kind
k -> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t f () -> f () -> f ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
k
ForallT [TyVarBndr_ flag]
bs Cxt
ctx Kind
ty -> let s' :: Set Name
s' = Set Name
s Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
`Set.union` Optic' A_Traversal NoIx [TyVarBndr_ flag] Name
-> [TyVarBndr_ flag] -> Set Name
forall k a (is :: IxList) s.
(Is k A_Fold, Ord a) =>
Optic' k is s a -> s -> Set a
setOf Optic' A_Traversal NoIx [TyVarBndr_ flag] Name
forall t. HasTypeVars t => Traversal' t Name
typeVars [TyVarBndr_ flag]
bs
in (Kind -> f ()) -> Cxt -> f ()
forall (t :: * -> *) (f :: * -> *) a b.
(Foldable t, Applicative f) =>
(a -> f b) -> t a -> f ()
traverse_ (Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s' Kind -> f ()
f) Cxt
ctx f () -> f () -> f ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s' Kind -> f ()
f Kind
ty
InfixT Kind
t1 Name
_ Kind
t2 -> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t1 f () -> f () -> f ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t2
UInfixT Kind
t1 Name
_ Kind
t2 -> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t1 f () -> f () -> f ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t2
ParensT Kind
t -> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t
#if MIN_VERSION_template_haskell(2,15,0)
AppKindT Kind
t Kind
k -> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t f () -> f () -> f ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
k
ImplicitParamT String
_ Kind
t -> Set Name -> (Kind -> f ()) -> Kind -> f ()
go Set Name
s Kind -> f ()
f Kind
t
#endif
Kind
_ -> () -> f ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
substTypeVars :: HasTypeVars t => Map Name Name -> t -> t
substTypeVars :: Map Name Name -> t -> t
substTypeVars Map Name Name
m = Optic A_Traversal NoIx t t Name Name -> (Name -> Name) -> t -> t
forall k (is :: IxList) s t a b.
Is k A_Setter =>
Optic k is s t a b -> (a -> b) -> s -> t
over Optic A_Traversal NoIx t t Name Name
forall t. HasTypeVars t => Traversal' t Name
typeVars ((Name -> Name) -> t -> t) -> (Name -> Name) -> t -> t
forall a b. (a -> b) -> a -> b
$ \Name
n -> Name -> Maybe Name -> Name
forall a. a -> Maybe a -> a
fromMaybe Name
n (Name
n Name -> Map Name Name -> Maybe Name
forall k a. Ord k => k -> Map k a -> Maybe a
`Map.lookup` Map Name Name
m)
class SubstType t where
substType :: Map Name Type -> t -> t
instance SubstType Type where
substType :: Map Name Kind -> Kind -> Kind
substType Map Name Kind
m t :: Kind
t@(VarT Name
n) = Kind -> Maybe Kind -> Kind
forall a. a -> Maybe a -> a
fromMaybe Kind
t (Name
n Name -> Map Name Kind -> Maybe Kind
forall k a. Ord k => k -> Map k a -> Maybe a
`Map.lookup` Map Name Kind
m)
substType Map Name Kind
m (ForallT [TyVarBndr_ flag]
bs Cxt
ctx Kind
ty) = [TyVarBndr_ flag] -> Cxt -> Kind -> Kind
ForallT [TyVarBndr_ flag]
bs (Map Name Kind -> Cxt -> Cxt
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m' Cxt
ctx) (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m' Kind
ty)
where m' :: Map Name Kind
m' = Optic' A_Traversal NoIx [TyVarBndr_ flag] Name
-> (Name -> Map Name Kind -> Map Name Kind)
-> Map Name Kind
-> [TyVarBndr_ flag]
-> Map Name Kind
forall k (is :: IxList) s a r.
Is k A_Fold =>
Optic' k is s a -> (a -> r -> r) -> r -> s -> r
foldrOf Optic' A_Traversal NoIx [TyVarBndr_ flag] Name
forall t. HasTypeVars t => Traversal' t Name
typeVars Name -> Map Name Kind -> Map Name Kind
forall k a. Ord k => k -> Map k a -> Map k a
Map.delete Map Name Kind
m [TyVarBndr_ flag]
bs
substType Map Name Kind
m (SigT Kind
t Kind
k) = Kind -> Kind -> Kind
SigT (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t) (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
k)
substType Map Name Kind
m (AppT Kind
l Kind
r) = Kind -> Kind -> Kind
AppT (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
l) (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
r)
substType Map Name Kind
m (InfixT Kind
t1 Name
n Kind
t2) = Kind -> Name -> Kind -> Kind
InfixT (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t1) Name
n (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t2)
substType Map Name Kind
m (UInfixT Kind
t1 Name
n Kind
t2) = Kind -> Name -> Kind -> Kind
UInfixT (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t1) Name
n (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t2)
substType Map Name Kind
m (ParensT Kind
t) = Kind -> Kind
ParensT (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t)
#if MIN_VERSION_template_haskell(2,15,0)
substType Map Name Kind
m (AppKindT Kind
t Kind
k) = Kind -> Kind -> Kind
AppKindT (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t) (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
k)
substType Map Name Kind
m (ImplicitParamT String
n Kind
t) = String -> Kind -> Kind
ImplicitParamT String
n (Map Name Kind -> Kind -> Kind
forall t. SubstType t => Map Name Kind -> t -> t
substType Map Name Kind
m Kind
t)
#endif
substType Map Name Kind
_ Kind
t = Kind
t
instance SubstType t => SubstType [t] where
substType :: Map Name Kind -> [t] -> [t]
substType = (t -> t) -> [t] -> [t]
forall a b. (a -> b) -> [a] -> [b]
map ((t -> t) -> [t] -> [t])
-> (Map Name Kind -> t -> t) -> Map Name Kind -> [t] -> [t]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Map Name Kind -> t -> t
forall t. SubstType t => Map Name Kind -> t -> t
substType
_FamilyI :: Prism' Info (Dec, [InstanceDec])
_FamilyI :: Prism' Info (Dec, [Dec])
_FamilyI
= ((Dec, [Dec]) -> Info)
-> (Info -> Maybe (Dec, [Dec])) -> Prism' Info (Dec, [Dec])
forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism' (Dec, [Dec]) -> Info
reviewer Info -> Maybe (Dec, [Dec])
remitter
where
reviewer :: (Dec, [Dec]) -> Info
reviewer (Dec
x, [Dec]
y) = Dec -> [Dec] -> Info
FamilyI Dec
x [Dec]
y
remitter :: Info -> Maybe (Dec, [Dec])
remitter (FamilyI Dec
x [Dec]
y) = (Dec, [Dec]) -> Maybe (Dec, [Dec])
forall a. a -> Maybe a
Just (Dec
x, [Dec]
y)
remitter Info
_ = Maybe (Dec, [Dec])
forall a. Maybe a
Nothing
_ClosedTypeFamilyD :: Prism' Dec (TypeFamilyHead, [TySynEqn])
_ClosedTypeFamilyD :: Prism' Dec (TypeFamilyHead, [TySynEqn])
_ClosedTypeFamilyD
= ((TypeFamilyHead, [TySynEqn]) -> Dec)
-> (Dec -> Maybe (TypeFamilyHead, [TySynEqn]))
-> Prism' Dec (TypeFamilyHead, [TySynEqn])
forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism' (TypeFamilyHead, [TySynEqn]) -> Dec
reviewer Dec -> Maybe (TypeFamilyHead, [TySynEqn])
remitter
where
reviewer :: (TypeFamilyHead, [TySynEqn]) -> Dec
reviewer (TypeFamilyHead
x, [TySynEqn]
y) = TypeFamilyHead -> [TySynEqn] -> Dec
ClosedTypeFamilyD TypeFamilyHead
x [TySynEqn]
y
remitter :: Dec -> Maybe (TypeFamilyHead, [TySynEqn])
remitter (ClosedTypeFamilyD TypeFamilyHead
x [TySynEqn]
y) = (TypeFamilyHead, [TySynEqn]) -> Maybe (TypeFamilyHead, [TySynEqn])
forall a. a -> Maybe a
Just (TypeFamilyHead
x, [TySynEqn]
y)
remitter Dec
_ = Maybe (TypeFamilyHead, [TySynEqn])
forall a. Maybe a
Nothing
_OpenTypeFamilyD :: Prism' Dec TypeFamilyHead
_OpenTypeFamilyD :: Prism' Dec TypeFamilyHead
_OpenTypeFamilyD
= (TypeFamilyHead -> Dec)
-> (Dec -> Maybe TypeFamilyHead) -> Prism' Dec TypeFamilyHead
forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism' TypeFamilyHead -> Dec
reviewer Dec -> Maybe TypeFamilyHead
remitter
where
reviewer :: TypeFamilyHead -> Dec
reviewer = TypeFamilyHead -> Dec
OpenTypeFamilyD
remitter :: Dec -> Maybe TypeFamilyHead
remitter (OpenTypeFamilyD TypeFamilyHead
x) = TypeFamilyHead -> Maybe TypeFamilyHead
forall a. a -> Maybe a
Just TypeFamilyHead
x
remitter Dec
_ = Maybe TypeFamilyHead
forall a. Maybe a
Nothing
_ForallT :: Prism' Type ([TyVarBndrSpec], Cxt, Type)
_ForallT :: Prism' Kind ([TyVarBndr_ flag], Cxt, Kind)
_ForallT
= (([TyVarBndr_ flag], Cxt, Kind) -> Kind)
-> (Kind -> Maybe ([TyVarBndr_ flag], Cxt, Kind))
-> Prism' Kind ([TyVarBndr_ flag], Cxt, Kind)
forall b s a. (b -> s) -> (s -> Maybe a) -> Prism s s a b
prism' ([TyVarBndr_ flag], Cxt, Kind) -> Kind
reviewer Kind -> Maybe ([TyVarBndr_ flag], Cxt, Kind)
remitter
where
reviewer :: ([TyVarBndr_ flag], Cxt, Kind) -> Kind
reviewer ([TyVarBndr_ flag]
x, Cxt
y, Kind
z) = [TyVarBndr_ flag] -> Cxt -> Kind -> Kind
ForallT [TyVarBndr_ flag]
x Cxt
y Kind
z
remitter :: Kind -> Maybe ([TyVarBndr_ flag], Cxt, Kind)
remitter (ForallT [TyVarBndr_ flag]
x Cxt
y Kind
z) = ([TyVarBndr_ flag], Cxt, Kind)
-> Maybe ([TyVarBndr_ flag], Cxt, Kind)
forall a. a -> Maybe a
Just ([TyVarBndr_ flag]
x, Cxt
y, Kind
z)
remitter Kind
_ = Maybe ([TyVarBndr_ flag], Cxt, Kind)
forall a. Maybe a
Nothing