Safe Haskell | Safe |
---|---|
Language | Haskell98 |
Synopsis
- data OSet a
- empty :: OSet a
- singleton :: a -> OSet a
- (<|) :: Ord a => a -> OSet a -> OSet a
- (|<) :: Ord a => a -> OSet a -> OSet a
- (>|) :: Ord a => OSet a -> a -> OSet a
- (|>) :: Ord a => OSet a -> a -> OSet a
- (<>|) :: Ord a => OSet a -> OSet a -> OSet a
- (|<>) :: Ord a => OSet a -> OSet a -> OSet a
- newtype Bias (dir :: IndexPreference) a = Bias {
- unbiased :: a
- type L = L
- type R = R
- null :: OSet a -> Bool
- size :: OSet a -> Int
- member :: Ord a => a -> OSet a -> Bool
- notMember :: Ord a => a -> OSet a -> Bool
- delete :: Ord a => a -> OSet a -> OSet a
- filter :: Ord a => (a -> Bool) -> OSet a -> OSet a
- (\\) :: Ord a => OSet a -> OSet a -> OSet a
- (|/\) :: Ord a => OSet a -> OSet a -> OSet a
- (/\|) :: Ord a => OSet a -> OSet a -> OSet a
- type Index = Int
- findIndex :: Ord a => a -> OSet a -> Maybe Index
- elemAt :: OSet a -> Index -> Maybe a
- fromList :: Ord a => [a] -> OSet a
- toAscList :: OSet a -> [a]
Documentation
Instances
Foldable OSet Source # | Values appear in insertion order, not ascending order. |
Defined in Data.Set.Ordered fold :: Monoid m => OSet m -> m # foldMap :: Monoid m => (a -> m) -> OSet a -> m # foldr :: (a -> b -> b) -> b -> OSet a -> b # foldr' :: (a -> b -> b) -> b -> OSet a -> b # foldl :: (b -> a -> b) -> b -> OSet a -> b # foldl' :: (b -> a -> b) -> b -> OSet a -> b # foldr1 :: (a -> a -> a) -> OSet a -> a # foldl1 :: (a -> a -> a) -> OSet a -> a # elem :: Eq a => a -> OSet a -> Bool # maximum :: Ord a => OSet a -> a # | |
Eq a => Eq (OSet a) Source # | |
(Data a, Ord a) => Data (OSet a) Source # | |
Defined in Data.Set.Ordered gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OSet a -> c (OSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (OSet a) # toConstr :: OSet a -> Constr # dataTypeOf :: OSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (OSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (OSet a)) # gmapT :: (forall b. Data b => b -> b) -> OSet a -> OSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OSet a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> OSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OSet a -> m (OSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OSet a -> m (OSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OSet a -> m (OSet a) # | |
Ord a => Ord (OSet a) Source # | |
(Ord a, Read a) => Read (OSet a) Source # | |
Show a => Show (OSet a) Source # | |
Ord a => Semigroup (Bias R (OSet a)) Source # | |
Ord a => Semigroup (Bias L (OSet a)) Source # | |
Ord a => Monoid (Bias R (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the right argument are preferred. See the asymptotics of ( |
Ord a => Monoid (Bias L (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the left argument are preferred. See the asymptotics of ( |
Trivial sets
Insertion
Conventions:
- The open side of an angle bracket points to an
OSet
- The pipe appears on the side whose indices take precedence for keys that appear on both sides
- The left argument's indices are lower than the right argument's indices
(<>|) :: Ord a => OSet a -> OSet a -> OSet a infixr 6 Source #
O(m*log(n)+n), where m is the size of the smaller set and n is the size of the larger set.
(|<>) :: Ord a => OSet a -> OSet a -> OSet a infixr 6 Source #
O(m*log(n)+n), where m is the size of the smaller set and n is the size of the larger set.
newtype Bias (dir :: IndexPreference) a Source #
A newtype to hand a Monoid
instance on. The phantom first parameter
tells whether mappend
will prefer the indices of its first or second
argument if there are shared elements in both.
Instances
(Ord k, Semigroup v) => Semigroup (Bias R (OMap k v)) Source # | |
Ord a => Semigroup (Bias R (OSet a)) Source # | |
(Ord k, Semigroup v) => Semigroup (Bias L (OMap k v)) Source # | |
Ord a => Semigroup (Bias L (OSet a)) Source # | |
(Ord k, Monoid v) => Monoid (Bias R (OMap k v)) Source # | Empty maps and map union. When combining two sets that share elements, the
indices of the right argument are preferred, and the values are combined
with See the asymptotics of |
Ord a => Monoid (Bias R (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the right argument are preferred. See the asymptotics of ( |
(Ord k, Monoid v) => Monoid (Bias L (OMap k v)) Source # | Empty maps and map union. When combining two sets that share elements, the
indices of the left argument are preferred, and the values are combined with
See the asymptotics of |
Ord a => Monoid (Bias L (OSet a)) Source # | Empty sets and set union. When combining two sets that share elements, the indices of the left argument are preferred. See the asymptotics of ( |
Query
Deletion
(\\) :: Ord a => OSet a -> OSet a -> OSet a Source #
Set difference: r \\ s
deletes all the values in s
from r
. The
order of r
is unchanged.
O(m*log(n)) where m is the size of the smaller set and n is the size of the larger set.
(|/\) :: Ord a => OSet a -> OSet a -> OSet a Source #
Intersection. (/\
is meant to look a bit like the standard mathematical
notation for intersection.)
O(m*log(n/(m+1)) + r*log(r)), where m is the size of the smaller set, n the size of the larger set, and r the size of the result.
Indexing
A 0-based index, much like the indices used by lists' !!
operation. All
indices are with respect to insertion order.