{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
module Data.Parameterized.List
( List(..)
, Index(..)
, indexValue
, (!!)
, update
, indexed
, imap
, ifoldr
, izipWith
, itraverse
, index0
, index1
, index2
, index3
) where
import qualified Control.Lens as Lens
import Prelude hiding ((!!))
import Data.Parameterized.Classes
import Data.Parameterized.TraversableFC
data List :: (k -> *) -> [k] -> * where
Nil :: List f '[]
(:<) :: f tp -> List f tps -> List f (tp : tps)
infixr 5 :<
instance ShowF f => Show (List f sh) where
showsPrec _ Nil = showString "Nil"
showsPrec p (elt :< rest) = showParen (p > precCons) $
showsPrecF (precCons+1) elt . showString " :< " . showsPrec 0 rest
where
precCons = 5
instance ShowF f => ShowF (List f)
instance FunctorFC List where
fmapFC _ Nil = Nil
fmapFC f (x :< xs) = f x :< fmapFC f xs
instance FoldableFC List where
foldrFC _ z Nil = z
foldrFC f z (x :< xs) = f x (foldrFC f z xs)
instance TraversableFC List where
traverseFC _ Nil = pure Nil
traverseFC f (h :< r) = (:<) <$> f h <*> traverseFC f r
instance TestEquality f => TestEquality (List f) where
testEquality Nil Nil = Just Refl
testEquality (xh :< xl) (yh :< yl) = do
Refl <- testEquality xh yh
Refl <- testEquality xl yl
pure Refl
testEquality _ _ = Nothing
instance OrdF f => OrdF (List f) where
compareF Nil Nil = EQF
compareF Nil _ = LTF
compareF _ Nil = GTF
compareF (xh :< xl) (yh :< yl) =
lexCompareF xh yh $
lexCompareF xl yl $
EQF
instance KnownRepr (List f) '[] where
knownRepr = Nil
instance (KnownRepr f s, KnownRepr (List f) sh) => KnownRepr (List f) (s ': sh) where
knownRepr = knownRepr :< knownRepr
data Index :: [k] -> k -> * where
IndexHere :: Index (x:r) x
IndexThere :: !(Index r y) -> Index (x:r) y
deriving instance Eq (Index l x)
deriving instance Show (Index l x)
instance ShowF (Index l)
instance TestEquality (Index l) where
testEquality IndexHere IndexHere = Just Refl
testEquality (IndexThere x) (IndexThere y) = testEquality x y
testEquality _ _ = Nothing
instance OrdF (Index l) where
compareF IndexHere IndexHere = EQF
compareF IndexHere IndexThere{} = LTF
compareF IndexThere{} IndexHere = GTF
compareF (IndexThere x) (IndexThere y) = compareF x y
instance Ord (Index sh x) where
x `compare` y = toOrdering $ x `compareF` y
indexValue :: Index l tp -> Integer
indexValue = go 0
where go :: Integer -> Index l tp -> Integer
go i IndexHere = i
go i (IndexThere x) = seq j $ go j x
where j = i+1
index0 :: Index (x:r) x
index0 = IndexHere
index1 :: Index (x0:x1:r) x1
index1 = IndexThere index0
index2 :: Index (x0:x1:x2:r) x2
index2 = IndexThere index1
index3 :: Index (x0:x1:x2:x3:r) x3
index3 = IndexThere index2
(!!) :: List f l -> Index l x -> f x
l !! (IndexThere i) =
case l of
_ :< r -> r !! i
l !! IndexHere =
case l of
(h :< _) -> h
update :: List f l -> Index l s -> (f s -> f s) -> List f l
update vals IndexHere upd =
case vals of
x :< rest -> upd x :< rest
update vals (IndexThere th) upd =
case vals of
x :< rest -> x :< update rest th upd
indexed :: Index l x -> Lens.Simple Lens.Lens (List f l) (f x)
indexed IndexHere f (x :< rest) = (:< rest) <$> f x
indexed (IndexThere i) f (x :< rest) = (x :<) <$> indexed i f rest
imap :: forall f g l
. (forall x . Index l x -> f x -> g x)
-> List f l
-> List g l
imap f = go id
where
go :: forall l'
. (forall tp . Index l' tp -> Index l tp)
-> List f l'
-> List g l'
go g l =
case l of
Nil -> Nil
e :< rest -> f (g IndexHere) e :< go (g . IndexThere) rest
ifoldr :: forall sh a b . (forall tp . Index sh tp -> a tp -> b -> b) -> b -> List a sh -> b
ifoldr f seed0 l = go id l seed0
where
go :: forall tps
. (forall tp . Index tps tp -> Index sh tp)
-> List a tps
-> b
-> b
go g ops b =
case ops of
Nil -> b
a :< rest -> f (g IndexHere) a (go (\ix -> g (IndexThere ix)) rest b)
izipWith :: forall a b c sh . (forall tp. Index sh tp -> a tp -> b tp -> c tp)
-> List a sh
-> List b sh
-> List c sh
izipWith f = go id
where
go :: forall sh' .
(forall tp . Index sh' tp -> Index sh tp)
-> List a sh'
-> List b sh'
-> List c sh'
go g as bs =
case (as, bs) of
(Nil, Nil) -> Nil
(a :< as', b :< bs') ->
f (g IndexHere) a b :< go (g . IndexThere) as' bs'
itraverse :: forall a b sh t
. Applicative t
=> (forall tp . Index sh tp -> a tp -> t (b tp))
-> List a sh
-> t (List b sh)
itraverse f = go id
where
go :: forall tps . (forall tp . Index tps tp -> Index sh tp)
-> List a tps
-> t (List b tps)
go g l =
case l of
Nil -> pure Nil
e :< rest -> (:<) <$> f (g IndexHere) e <*> go (\ix -> g (IndexThere ix)) rest