{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE ExplicitNamespaces #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
#if MIN_VERSION_base(4,9,0)
{-# OPTIONS_GHC -fno-warn-redundant-constraints #-}
#endif
#if __GLASGOW_HASKELL__ >= 805
{-# LANGUAGE NoStarIsType #-}
#endif
module Data.Parameterized.Peano
(
Peano
, Z , S
, Plus, Minus, Mul, Max, Min
, plusP, minusP, mulP, maxP, minP
, zeroP, succP, predP
, Repeat, CtxSizeP
, repeatP, ctxSizeP
, Le, Lt, Gt, Ge
, leP, ltP, gtP, geP
, KnownPeano
, PeanoRepr
, PeanoView(..), peanoView, viewRepr
, mkPeanoRepr, peanoValue
, somePeano
, maxPeano
, minPeano
, peanoLength
, plusCtxSizeAxiom
, minusPlusAxiom
, ltMinusPlusAxiom
, TestEquality(..)
, (:~:)(..)
, Data.Parameterized.Some.Some
) where
import Data.Parameterized.BoolRepr
import Data.Parameterized.Classes
import Data.Parameterized.DecidableEq
import Data.Parameterized.Some
import Data.Parameterized.Context
import Data.Hashable
import Data.Word
#ifdef UNSAFE_OPS
import Unsafe.Coerce(unsafeCoerce)
#endif
data Peano = Z | S Peano
type Z = 'Z
type S = 'S
type family Plus (a :: Peano) (b :: Peano) :: Peano where
Plus Z b = b
Plus (S a) b = S (Plus a b)
type family Minus (a :: Peano) (b :: Peano) :: Peano where
Minus Z b = Z
Minus (S a) (S b) = Minus a b
Minus a Z = a
type family Mul (a :: Peano) (b :: Peano) :: Peano where
Mul Z b = Z
Mul (S a) b = Plus a (Mul a b)
type family Le (a :: Peano) (b :: Peano) :: Bool where
Le Z b = 'True
Le a Z = 'False
Le (S a) (S b) = Le a b
type family Lt (a :: Peano) (b :: Peano) :: Bool where
Lt a b = Le (S a) b
type family Gt (a :: Peano) (b :: Peano) :: Bool where
Gt a b = Le b a
type family Ge (a :: Peano) (b :: Peano) :: Bool where
Ge a b = Lt b a
type family Max (a :: Peano) (b :: Peano) :: Peano where
Max Z b = b
Max a Z = a
Max (S a) (S b) = S (Max a b)
type family Min (a :: Peano) (b :: Peano) :: Peano where
Min Z b = Z
Min a Z = Z
Min (S a) (S b) = S (Min a b)
type family Repeat (m :: Peano) (f :: k -> k) (s :: k) :: k where
Repeat Z f s = s
Repeat (S m) f s = f (Repeat m f s)
type family CtxSizeP (ctx :: Ctx k) :: Peano where
CtxSizeP 'EmptyCtx = Z
CtxSizeP (xs '::> x) = S (CtxSizeP xs)
#ifdef UNSAFE_OPS
newtype PeanoRepr (n :: Peano) =
PeanoRepr { peanoValue :: Word64 }
type role PeanoRepr nominal
#else
type PeanoRepr = PeanoView
peanoValue :: PeanoRepr n -> Word64
peanoValue ZRepr = 0
peanoValue (SRepr m) = 1 + peanoValue m
#endif
data PeanoView (n :: Peano) where
ZRepr :: PeanoView Z
SRepr :: PeanoRepr n -> PeanoView (S n)
peanoView :: PeanoRepr n -> PeanoView n
#ifdef UNSAFE_OPS
peanoView (PeanoRepr i) =
if i == 0
then unsafeCoerce ZRepr
else unsafeCoerce (SRepr (PeanoRepr (i-1)))
#else
peanoView = id
#endif
viewRepr :: PeanoView n -> PeanoRepr n
#ifdef UNSAFE_OPS
viewRepr ZRepr = PeanoRepr 0
viewRepr (SRepr n) = PeanoRepr (peanoValue n + 1)
#else
viewRepr = id
#endif
instance Hashable (PeanoRepr n) where
hashWithSalt i x = hashWithSalt i (peanoValue x)
instance Eq (PeanoRepr m) where
_ == _ = True
instance TestEquality PeanoRepr where
#ifdef UNSAFE_OPS
testEquality (PeanoRepr m) (PeanoRepr n)
| m == n = Just (unsafeCoerce Refl)
| otherwise = Nothing
#else
testEquality ZRepr ZRepr = Just Refl
testEquality (SRepr m1) (SRepr m2)
| Just Refl <- testEquality m1 m2
= Just Refl
testEquality _ _ = Nothing
#endif
instance DecidableEq PeanoRepr where
#ifdef UNSAFE_OPS
decEq (PeanoRepr m) (PeanoRepr n)
| m == n = Left $ unsafeCoerce Refl
| otherwise = Right $
\x -> seq x $ error "Impossible [DecidableEq on PeanoRepr]"
#else
decEq ZRepr ZRepr = Left Refl
decEq (SRepr m1) (SRepr m2) =
case decEq m1 m2 of
Left Refl -> Left Refl
Right f -> Right $ \case Refl -> f Refl
decEq ZRepr (SRepr _) =
Right $ \case {}
decEq (SRepr _) ZRepr =
Right $ \case {}
#endif
instance OrdF PeanoRepr where
#ifdef UNSAFE_OPS
compareF (PeanoRepr m) (PeanoRepr n)
| m < n = unsafeCoerce LTF
| m == n = unsafeCoerce EQF
| otherwise = unsafeCoerce GTF
#else
compareF ZRepr ZRepr = EQF
compareF ZRepr (SRepr _) = LTF
compareF (SRepr _) ZRepr = GTF
compareF (SRepr m1) (SRepr m2) =
case compareF m1 m2 of
EQF -> EQF
LTF -> LTF
GTF -> GTF
#endif
instance PolyEq (PeanoRepr m) (PeanoRepr n) where
polyEqF x y = (\Refl -> Refl) <$> testEquality x y
instance Show (PeanoRepr p) where
show p = show (peanoValue p)
instance ShowF PeanoRepr
instance HashableF PeanoRepr where
hashWithSaltF = hashWithSalt
type KnownPeano = KnownRepr PeanoRepr
instance KnownRepr PeanoRepr Z where
knownRepr = viewRepr ZRepr
instance (KnownRepr PeanoRepr n) => KnownRepr PeanoRepr (S n) where
knownRepr = viewRepr (SRepr knownRepr)
zeroP :: PeanoRepr Z
#ifdef UNSAFE_OPS
zeroP = PeanoRepr 0
#else
zeroP = ZRepr
#endif
succP :: PeanoRepr n -> PeanoRepr (S n)
#ifdef UNSAFE_OPS
succP (PeanoRepr i) = PeanoRepr (i+1)
#else
succP = SRepr
#endif
predP :: PeanoRepr (S n) -> PeanoRepr n
#ifdef UNSAFE_OPS
predP (PeanoRepr i) = PeanoRepr (i-1)
#else
predP (SRepr i) = i
#endif
plusP :: PeanoRepr a -> PeanoRepr b -> PeanoRepr (Plus a b)
#ifdef UNSAFE_OPS
plusP (PeanoRepr a) (PeanoRepr b) = PeanoRepr (a + b)
#else
plusP (SRepr a) b = SRepr (plusP a b)
#endif
minusP :: PeanoRepr a -> PeanoRepr b -> PeanoRepr (Minus a b)
#ifdef UNSAFE_OPS
minusP (PeanoRepr a) (PeanoRepr b) = PeanoRepr (a - b)
#else
minusP ZRepr _b = ZRepr
minusP (SRepr a) (SRepr b) = minusP a b
minusP a ZRepr = a
#endif
mulP :: PeanoRepr a -> PeanoRepr b -> PeanoRepr (Mul a b)
#ifdef UNSAFE_OPS
mulP (PeanoRepr a) (PeanoRepr b) = PeanoRepr (a * b)
#else
mulP ZRepr _b = ZRepr
mulP (SRepr a) b = plusP a (mulP a b)
#endif
maxP :: PeanoRepr a -> PeanoRepr b -> PeanoRepr (Max a b)
#ifdef UNSAFE_OPS
maxP (PeanoRepr a) (PeanoRepr b) = PeanoRepr (max a b)
#else
maxP ZRepr b = b
maxP a ZRepr = a
maxP (SRepr a) (SRepr b) = SRepr (maxP a b)
#endif
minP :: PeanoRepr a -> PeanoRepr b -> PeanoRepr (Min a b)
#ifdef UNSAFE_OPS
minP (PeanoRepr a) (PeanoRepr b) = PeanoRepr (min a b)
#else
minP ZRepr _b = ZRepr
minP _a ZRepr = ZRepr
minP (SRepr a) (SRepr b) = SRepr (minP a b)
#endif
leP :: PeanoRepr a -> PeanoRepr b -> BoolRepr (Le a b)
#ifdef UNSAFE_OPS
leP (PeanoRepr a) (PeanoRepr b) =
if a <= b then unsafeCoerce (TrueRepr)
else unsafeCoerce(FalseRepr)
#else
leP ZRepr ZRepr = TrueRepr
leP ZRepr (SRepr _) = TrueRepr
leP (SRepr _) ZRepr = FalseRepr
leP (SRepr a) (SRepr b) = leP a b
#endif
ltP :: PeanoRepr a -> PeanoRepr b -> BoolRepr (Lt a b)
ltP a b = leP (succP a) b
geP :: PeanoRepr a -> PeanoRepr b -> BoolRepr (Ge a b)
geP a b = ltP b a
gtP :: PeanoRepr a -> PeanoRepr b -> BoolRepr (Gt a b)
gtP a b = leP b a
repeatP :: PeanoRepr m -> (forall a. repr a -> repr (f a)) -> repr s -> repr (Repeat m f s)
repeatP n f s = case peanoView n of
ZRepr -> s
SRepr m -> f (repeatP m f s)
ctxSizeP :: Assignment f ctx -> PeanoRepr (CtxSizeP ctx)
ctxSizeP r = case viewAssign r of
AssignEmpty -> zeroP
AssignExtend a _ -> succP (ctxSizeP a)
mkPeanoRepr :: Word64 -> Some PeanoRepr
#ifdef UNSAFE_OPS
mkPeanoRepr n = Some (PeanoRepr n)
#else
mkPeanoRepr 0 = Some ZRepr
mkPeanoRepr n = case mkPeanoRepr (n - 1) of
Some mr -> Some (SRepr mr)
#endif
somePeano :: Integral a => a -> Maybe (Some PeanoRepr)
somePeano x | x >= 0 = Just . mkPeanoRepr $! fromIntegral x
somePeano _ = Nothing
maxPeano :: PeanoRepr m -> PeanoRepr n -> Some PeanoRepr
maxPeano x y = Some (maxP x y)
minPeano :: PeanoRepr m -> PeanoRepr n -> Some PeanoRepr
minPeano x y = Some (minP x y)
peanoLength :: [a] -> Some PeanoRepr
peanoLength [] = Some zeroP
peanoLength (_:xs) = case peanoLength xs of
Some n -> Some (succP n)
plusCtxSizeAxiom :: forall t1 t2 f.
Assignment f t1 -> Assignment f t2 ->
CtxSizeP (t1 <+> t2) :~: Plus (CtxSizeP t2) (CtxSizeP t1)
#ifdef UNSAFE_OPS
plusCtxSizeAxiom _t1 _t2 = unsafeCoerce Refl
#else
plusCtxSizeAxiom t1 t2 =
case viewAssign t2 of
AssignEmpty -> Refl
AssignExtend t2' _
| Refl <- plusCtxSizeAxiom t1 t2' -> Refl
#endif
minusPlusAxiom :: forall n t t'.
PeanoRepr n -> PeanoRepr t -> PeanoRepr t' ->
Minus n (Plus t' t) :~: Minus (Minus n t') t
#ifdef UNSAFE_OPS
minusPlusAxiom _n _t _t' = unsafeCoerce Refl
#else
minusPlusAxiom n t t' = case peanoView t' of
ZRepr -> Refl
SRepr t1' -> case peanoView n of
ZRepr -> Refl
SRepr n1 -> case minusPlusAxiom n1 t t1' of
Refl -> Refl
#endif
ltMinusPlusAxiom :: forall n t t'.
(Lt t (Minus n t') ~ 'True) =>
PeanoRepr n -> PeanoRepr t -> PeanoRepr t' ->
Lt (Plus t' t) n :~: 'True
#ifdef UNSAFE_OPS
ltMinusPlusAxiom _n _t _t' = unsafeCoerce Refl
#else
ltMinusPlusAxiom n t t' = case peanoView n of
SRepr m -> case peanoView t' of
ZRepr -> Refl
SRepr t1' -> case ltMinusPlusAxiom m t t1' of
Refl -> Refl
#endif