{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
module Data.Parameterized.List
( List(..)
, Index(..)
, indexValue
, (!!)
, update
, indexed
, imap
, ifoldr
, izipWith
, itraverse
, index0
, index1
, index2
, index3
) where
import qualified Control.Lens as Lens
import Data.Kind
import Prelude hiding ((!!))
import Data.Parameterized.Classes
import Data.Parameterized.TraversableFC
data List :: (k -> Type) -> [k] -> Type where
Nil :: List f '[]
(:<) :: f tp -> List f tps -> List f (tp : tps)
infixr 5 :<
instance ShowF f => Show (List f sh) where
showsPrec :: Int -> List f sh -> ShowS
showsPrec Int
_ List f sh
Nil = String -> ShowS
showString String
"Nil"
showsPrec Int
p (f tp
elt :< List f tps
rest) = Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
precCons) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
Int -> f tp -> ShowS
forall k (f :: k -> *) (tp :: k). ShowF f => Int -> f tp -> ShowS
showsPrecF (Int
precConsInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) f tp
elt ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> ShowS
showString String
" :< " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> List f tps -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
0 List f tps
rest
where
precCons :: Int
precCons = Int
5
instance ShowF f => ShowF (List f)
instance FunctorFC List where
fmapFC :: (forall (x :: k). f x -> g x)
-> forall (x :: [k]). List f x -> List g x
fmapFC forall (x :: k). f x -> g x
_ List f x
Nil = List g x
forall k (f :: k -> *). List f '[]
Nil
fmapFC forall (x :: k). f x -> g x
f (f tp
x :< List f tps
xs) = f tp -> g tp
forall (x :: k). f x -> g x
f f tp
x g tp -> List g tps -> List g (tp : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:< (forall (x :: k). f x -> g x) -> List f tps -> List g tps
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *).
FunctorFC t =>
(forall (x :: k). f x -> g x) -> forall (x :: l). t f x -> t g x
fmapFC forall (x :: k). f x -> g x
f List f tps
xs
instance FoldableFC List where
foldrFC :: (forall (x :: k). f x -> b -> b)
-> forall (x :: [k]). b -> List f x -> b
foldrFC forall (x :: k). f x -> b -> b
_ b
z List f x
Nil = b
z
foldrFC forall (x :: k). f x -> b -> b
f b
z (f tp
x :< List f tps
xs) = f tp -> b -> b
forall (x :: k). f x -> b -> b
f f tp
x ((forall (x :: k). f x -> b -> b) -> b -> List f tps -> b
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *) b.
FoldableFC t =>
(forall (x :: k). f x -> b -> b)
-> forall (x :: l). b -> t f x -> b
foldrFC forall (x :: k). f x -> b -> b
f b
z List f tps
xs)
instance TraversableFC List where
traverseFC :: (forall (x :: k). f x -> m (g x))
-> forall (x :: [k]). List f x -> m (List g x)
traverseFC forall (x :: k). f x -> m (g x)
_ List f x
Nil = List g '[] -> m (List g '[])
forall (f :: * -> *) a. Applicative f => a -> f a
pure List g '[]
forall k (f :: k -> *). List f '[]
Nil
traverseFC forall (x :: k). f x -> m (g x)
f (f tp
h :< List f tps
r) = g tp -> List g tps -> List g (tp : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
(:<) (g tp -> List g tps -> List g (tp : tps))
-> m (g tp) -> m (List g tps -> List g (tp : tps))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f tp -> m (g tp)
forall (x :: k). f x -> m (g x)
f f tp
h m (List g tps -> List g (tp : tps))
-> m (List g tps) -> m (List g (tp : tps))
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall (x :: k). f x -> m (g x)) -> List f tps -> m (List g tps)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *)
(m :: * -> *).
(TraversableFC t, Applicative m) =>
(forall (x :: k). f x -> m (g x))
-> forall (x :: l). t f x -> m (t g x)
traverseFC forall (x :: k). f x -> m (g x)
f List f tps
r
instance TestEquality f => TestEquality (List f) where
testEquality :: List f a -> List f b -> Maybe (a :~: b)
testEquality List f a
Nil List f b
Nil = (a :~: a) -> Maybe (a :~: a)
forall a. a -> Maybe a
Just a :~: a
forall k (a :: k). a :~: a
Refl
testEquality (f tp
xh :< List f tps
xl) (f tp
yh :< List f tps
yl) = do
tp :~: tp
Refl <- f tp -> f tp -> Maybe (tp :~: tp)
forall k (f :: k -> *) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality f tp
xh f tp
yh
tps :~: tps
Refl <- List f tps -> List f tps -> Maybe (tps :~: tps)
forall k (f :: k -> *) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality List f tps
xl List f tps
yl
(a :~: a) -> Maybe (a :~: a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure a :~: a
forall k (a :: k). a :~: a
Refl
testEquality List f a
_ List f b
_ = Maybe (a :~: b)
forall a. Maybe a
Nothing
instance OrdF f => OrdF (List f) where
compareF :: List f x -> List f y -> OrderingF x y
compareF List f x
Nil List f y
Nil = OrderingF x y
forall k (x :: k). OrderingF x x
EQF
compareF List f x
Nil List f y
_ = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
LTF
compareF List f x
_ List f y
Nil = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
GTF
compareF (f tp
xh :< List f tps
xl) (f tp
yh :< List f tps
yl) =
f tp -> f tp -> ((tp ~ tp) => OrderingF x y) -> OrderingF x y
forall j k (f :: j -> *) (a :: j) (b :: j) (c :: k) (d :: k).
OrdF f =>
f a -> f b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
lexCompareF f tp
xh f tp
yh (((tp ~ tp) => OrderingF x y) -> OrderingF x y)
-> ((tp ~ tp) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$
List f tps
-> List f tps -> ((tps ~ tps) => OrderingF x y) -> OrderingF x y
forall j k (f :: j -> *) (a :: j) (b :: j) (c :: k) (d :: k).
OrdF f =>
f a -> f b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
lexCompareF List f tps
xl List f tps
yl (((tps ~ tps) => OrderingF x y) -> OrderingF x y)
-> ((tps ~ tps) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$
(tps ~ tps) => OrderingF x y
forall k (x :: k). OrderingF x x
EQF
instance KnownRepr (List f) '[] where
knownRepr :: List f '[]
knownRepr = List f '[]
forall k (f :: k -> *). List f '[]
Nil
instance (KnownRepr f s, KnownRepr (List f) sh) => KnownRepr (List f) (s ': sh) where
knownRepr :: List f (s : sh)
knownRepr = f s
forall k (f :: k -> *) (ctx :: k). KnownRepr f ctx => f ctx
knownRepr f s -> List f sh -> List f (s : sh)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:< List f sh
forall k (f :: k -> *) (ctx :: k). KnownRepr f ctx => f ctx
knownRepr
data Index :: [k] -> k -> Type where
IndexHere :: Index (x:r) x
IndexThere :: !(Index r y) -> Index (x:r) y
deriving instance Eq (Index l x)
deriving instance Show (Index l x)
instance ShowF (Index l)
instance TestEquality (Index l) where
testEquality :: Index l a -> Index l b -> Maybe (a :~: b)
testEquality Index l a
IndexHere Index l b
IndexHere = (a :~: a) -> Maybe (a :~: a)
forall a. a -> Maybe a
Just a :~: a
forall k (a :: k). a :~: a
Refl
testEquality (IndexThere Index r a
x) (IndexThere Index r b
y) = Index r a -> Index r b -> Maybe (a :~: b)
forall k (f :: k -> *) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality Index r a
x Index r b
Index r b
y
testEquality Index l a
_ Index l b
_ = Maybe (a :~: b)
forall a. Maybe a
Nothing
instance OrdF (Index l) where
compareF :: Index l x -> Index l y -> OrderingF x y
compareF Index l x
IndexHere Index l y
IndexHere = OrderingF x y
forall k (x :: k). OrderingF x x
EQF
compareF Index l x
IndexHere IndexThere{} = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
LTF
compareF IndexThere{} Index l y
IndexHere = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
GTF
compareF (IndexThere Index r x
x) (IndexThere Index r y
y) = Index r x -> Index r y -> OrderingF x y
forall k (ktp :: k -> *) (x :: k) (y :: k).
OrdF ktp =>
ktp x -> ktp y -> OrderingF x y
compareF Index r x
x Index r y
Index r y
y
instance Ord (Index sh x) where
Index sh x
x compare :: Index sh x -> Index sh x -> Ordering
`compare` Index sh x
y = OrderingF x x -> Ordering
forall k (x :: k) (y :: k). OrderingF x y -> Ordering
toOrdering (OrderingF x x -> Ordering) -> OrderingF x x -> Ordering
forall a b. (a -> b) -> a -> b
$ Index sh x
x Index sh x -> Index sh x -> OrderingF x x
forall k (ktp :: k -> *) (x :: k) (y :: k).
OrdF ktp =>
ktp x -> ktp y -> OrderingF x y
`compareF` Index sh x
y
indexValue :: Index l tp -> Integer
indexValue :: Index l tp -> Integer
indexValue = Integer -> Index l tp -> Integer
forall k (l :: [k]) (tp :: k). Integer -> Index l tp -> Integer
go Integer
0
where go :: Integer -> Index l tp -> Integer
go :: Integer -> Index l tp -> Integer
go Integer
i Index l tp
IndexHere = Integer
i
go Integer
i (IndexThere Index r tp
x) = Integer -> Integer -> Integer
seq Integer
j (Integer -> Integer) -> Integer -> Integer
forall a b. (a -> b) -> a -> b
$ Integer -> Index r tp -> Integer
forall k (l :: [k]) (tp :: k). Integer -> Index l tp -> Integer
go Integer
j Index r tp
x
where j :: Integer
j = Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
1
instance Hashable (Index l x) where
hashWithSalt :: Int -> Index l x -> Int
hashWithSalt Int
s Index l x
i = Int
s Int -> Integer -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` (Index l x -> Integer
forall k (l :: [k]) (tp :: k). Index l tp -> Integer
indexValue Index l x
i)
index0 :: Index (x:r) x
index0 :: Index (x : r) x
index0 = Index (x : r) x
forall k (x :: k) (r :: [k]). Index (x : r) x
IndexHere
index1 :: Index (x0:x1:r) x1
index1 :: Index (x0 : x1 : r) x1
index1 = Index (x1 : r) x1 -> Index (x0 : x1 : r) x1
forall k (r :: [k]) (y :: k) (x :: k). Index r y -> Index (x : r) y
IndexThere Index (x1 : r) x1
forall k (x :: k) (r :: [k]). Index (x : r) x
index0
index2 :: Index (x0:x1:x2:r) x2
index2 :: Index (x0 : x1 : x2 : r) x2
index2 = Index (x1 : x2 : r) x2 -> Index (x0 : x1 : x2 : r) x2
forall k (r :: [k]) (y :: k) (x :: k). Index r y -> Index (x : r) y
IndexThere Index (x1 : x2 : r) x2
forall k (x0 :: k) (x1 :: k) (r :: [k]). Index (x0 : x1 : r) x1
index1
index3 :: Index (x0:x1:x2:x3:r) x3
index3 :: Index (x0 : x1 : x2 : x3 : r) x3
index3 = Index (x1 : x2 : x3 : r) x3 -> Index (x0 : x1 : x2 : x3 : r) x3
forall k (r :: [k]) (y :: k) (x :: k). Index r y -> Index (x : r) y
IndexThere Index (x1 : x2 : x3 : r) x3
forall k (x0 :: k) (x1 :: k) (x2 :: k) (r :: [k]).
Index (x0 : x1 : x2 : r) x2
index2
(!!) :: List f l -> Index l x -> f x
List f l
l !! :: List f l -> Index l x -> f x
!! (IndexThere Index r x
i) =
case List f l
l of
f tp
_ :< List f tps
r -> List f tps
r List f tps -> Index tps x -> f x
forall k (f :: k -> *) (l :: [k]) (x :: k).
List f l -> Index l x -> f x
!! Index r x
Index tps x
i
List f l
l !! Index l x
IndexHere =
case List f l
l of
(f tp
h :< List f tps
_) -> f x
f tp
h
update :: List f l -> Index l s -> (f s -> f s) -> List f l
update :: List f l -> Index l s -> (f s -> f s) -> List f l
update List f l
vals Index l s
IndexHere f s -> f s
upd =
case List f l
vals of
f tp
x :< List f tps
rest -> f s -> f s
upd f s
f tp
x f s -> List f tps -> List f (s : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:< List f tps
rest
update List f l
vals (IndexThere Index r s
th) f s -> f s
upd =
case List f l
vals of
f tp
x :< List f tps
rest -> f tp
x f tp -> List f tps -> List f (tp : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:< List f tps -> Index tps s -> (f s -> f s) -> List f tps
forall k (f :: k -> *) (l :: [k]) (s :: k).
List f l -> Index l s -> (f s -> f s) -> List f l
update List f tps
rest Index r s
Index tps s
th f s -> f s
upd
indexed :: Index l x -> Lens.Lens' (List f l) (f x)
indexed :: Index l x -> Lens' (List f l) (f x)
indexed Index l x
IndexHere f x -> f (f x)
f (f tp
x :< List f tps
rest) = (f x -> List f tps -> List f (x : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:< List f tps
rest) (f x -> List f (x : tps)) -> f (f x) -> f (List f (x : tps))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f x -> f (f x)
f f x
f tp
x
indexed (IndexThere Index r x
i) f x -> f (f x)
f (f tp
x :< List f tps
rest) = (f tp
x f tp -> List f r -> List f (tp : r)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:<) (List f r -> List f (tp : r))
-> f (List f r) -> f (List f (tp : r))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Index r x -> (f x -> f (f x)) -> List f r -> f (List f r)
forall k (l :: [k]) (x :: k) (f :: k -> *).
Index l x -> Lens' (List f l) (f x)
indexed Index r x
i f x -> f (f x)
f List f r
List f tps
rest
imap :: forall f g l
. (forall x . Index l x -> f x -> g x)
-> List f l
-> List g l
imap :: (forall (x :: k). Index l x -> f x -> g x) -> List f l -> List g l
imap forall (x :: k). Index l x -> f x -> g x
f = (forall (tp :: k). Index l tp -> Index l tp)
-> List f l -> List g l
forall (l' :: [k]).
(forall (tp :: k). Index l' tp -> Index l tp)
-> List f l' -> List g l'
go forall (tp :: k). Index l tp -> Index l tp
forall a. a -> a
id
where
go :: forall l'
. (forall tp . Index l' tp -> Index l tp)
-> List f l'
-> List g l'
go :: (forall (tp :: k). Index l' tp -> Index l tp)
-> List f l' -> List g l'
go forall (tp :: k). Index l' tp -> Index l tp
g List f l'
l =
case List f l'
l of
List f l'
Nil -> List g l'
forall k (f :: k -> *). List f '[]
Nil
f tp
e :< List f tps
rest -> Index l tp -> f tp -> g tp
forall (x :: k). Index l x -> f x -> g x
f (Index l' tp -> Index l tp
forall (tp :: k). Index l' tp -> Index l tp
g Index l' tp
forall k (x :: k) (r :: [k]). Index (x : r) x
IndexHere) f tp
e g tp -> List g tps -> List g (tp : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:< (forall (tp :: k). Index tps tp -> Index l tp)
-> List f tps -> List g tps
forall (l' :: [k]).
(forall (tp :: k). Index l' tp -> Index l tp)
-> List f l' -> List g l'
go (Index l' tp -> Index l tp
forall (tp :: k). Index l' tp -> Index l tp
g (Index l' tp -> Index l tp)
-> (Index tps tp -> Index l' tp) -> Index tps tp -> Index l tp
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Index tps tp -> Index l' tp
forall k (r :: [k]) (y :: k) (x :: k). Index r y -> Index (x : r) y
IndexThere) List f tps
rest
ifoldr :: forall sh a b . (forall tp . Index sh tp -> a tp -> b -> b) -> b -> List a sh -> b
ifoldr :: (forall (tp :: k). Index sh tp -> a tp -> b -> b)
-> b -> List a sh -> b
ifoldr forall (tp :: k). Index sh tp -> a tp -> b -> b
f b
seed0 List a sh
l = (forall (tp :: k). Index sh tp -> Index sh tp)
-> List a sh -> b -> b
forall (tps :: [k]).
(forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> b -> b
go forall (tp :: k). Index sh tp -> Index sh tp
forall a. a -> a
id List a sh
l b
seed0
where
go :: forall tps
. (forall tp . Index tps tp -> Index sh tp)
-> List a tps
-> b
-> b
go :: (forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> b -> b
go forall (tp :: k). Index tps tp -> Index sh tp
g List a tps
ops b
b =
case List a tps
ops of
List a tps
Nil -> b
b
a tp
a :< List a tps
rest -> Index sh tp -> a tp -> b -> b
forall (tp :: k). Index sh tp -> a tp -> b -> b
f (Index tps tp -> Index sh tp
forall (tp :: k). Index tps tp -> Index sh tp
g Index tps tp
forall k (x :: k) (r :: [k]). Index (x : r) x
IndexHere) a tp
a ((forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> b -> b
forall (tps :: [k]).
(forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> b -> b
go (\Index tps tp
ix -> Index tps tp -> Index sh tp
forall (tp :: k). Index tps tp -> Index sh tp
g (Index tps tp -> Index (tp : tps) tp
forall k (r :: [k]) (y :: k) (x :: k). Index r y -> Index (x : r) y
IndexThere Index tps tp
ix)) List a tps
rest b
b)
izipWith :: forall a b c sh . (forall tp. Index sh tp -> a tp -> b tp -> c tp)
-> List a sh
-> List b sh
-> List c sh
izipWith :: (forall (tp :: k). Index sh tp -> a tp -> b tp -> c tp)
-> List a sh -> List b sh -> List c sh
izipWith forall (tp :: k). Index sh tp -> a tp -> b tp -> c tp
f = (forall (tp :: k). Index sh tp -> Index sh tp)
-> List a sh -> List b sh -> List c sh
forall (sh' :: [k]).
(forall (tp :: k). Index sh' tp -> Index sh tp)
-> List a sh' -> List b sh' -> List c sh'
go forall (tp :: k). Index sh tp -> Index sh tp
forall a. a -> a
id
where
go :: forall sh' .
(forall tp . Index sh' tp -> Index sh tp)
-> List a sh'
-> List b sh'
-> List c sh'
go :: (forall (tp :: k). Index sh' tp -> Index sh tp)
-> List a sh' -> List b sh' -> List c sh'
go forall (tp :: k). Index sh' tp -> Index sh tp
g List a sh'
as List b sh'
bs =
case (List a sh'
as, List b sh'
bs) of
(List a sh'
Nil, List b sh'
Nil) -> List c sh'
forall k (f :: k -> *). List f '[]
Nil
(a tp
a :< List a tps
as', b tp
b :< List b tps
bs') ->
Index sh tp -> a tp -> b tp -> c tp
forall (tp :: k). Index sh tp -> a tp -> b tp -> c tp
f (Index sh' tp -> Index sh tp
forall (tp :: k). Index sh' tp -> Index sh tp
g Index sh' tp
forall k (x :: k) (r :: [k]). Index (x : r) x
IndexHere) a tp
a b tp
b tp
b c tp -> List c tps -> List c (tp : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
:< (forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> List b tps -> List c tps
forall (sh' :: [k]).
(forall (tp :: k). Index sh' tp -> Index sh tp)
-> List a sh' -> List b sh' -> List c sh'
go (Index sh' tp -> Index sh tp
forall (tp :: k). Index sh' tp -> Index sh tp
g (Index sh' tp -> Index sh tp)
-> (Index tps tp -> Index sh' tp) -> Index tps tp -> Index sh tp
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Index tps tp -> Index sh' tp
forall k (r :: [k]) (y :: k) (x :: k). Index r y -> Index (x : r) y
IndexThere) List a tps
as' List b tps
List b tps
bs'
itraverse :: forall a b sh t
. Applicative t
=> (forall tp . Index sh tp -> a tp -> t (b tp))
-> List a sh
-> t (List b sh)
itraverse :: (forall (tp :: k). Index sh tp -> a tp -> t (b tp))
-> List a sh -> t (List b sh)
itraverse forall (tp :: k). Index sh tp -> a tp -> t (b tp)
f = (forall (tp :: k). Index sh tp -> Index sh tp)
-> List a sh -> t (List b sh)
forall (tps :: [k]).
(forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> t (List b tps)
go forall (tp :: k). Index sh tp -> Index sh tp
forall a. a -> a
id
where
go :: forall tps . (forall tp . Index tps tp -> Index sh tp)
-> List a tps
-> t (List b tps)
go :: (forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> t (List b tps)
go forall (tp :: k). Index tps tp -> Index sh tp
g List a tps
l =
case List a tps
l of
List a tps
Nil -> List b '[] -> t (List b '[])
forall (f :: * -> *) a. Applicative f => a -> f a
pure List b '[]
forall k (f :: k -> *). List f '[]
Nil
a tp
e :< List a tps
rest -> b tp -> List b tps -> List b (tp : tps)
forall a (f :: a -> *) (tp :: a) (tps :: [a]).
f tp -> List f tps -> List f (tp : tps)
(:<) (b tp -> List b tps -> List b (tp : tps))
-> t (b tp) -> t (List b tps -> List b (tp : tps))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Index sh tp -> a tp -> t (b tp)
forall (tp :: k). Index sh tp -> a tp -> t (b tp)
f (Index tps tp -> Index sh tp
forall (tp :: k). Index tps tp -> Index sh tp
g Index tps tp
forall k (x :: k) (r :: [k]). Index (x : r) x
IndexHere) a tp
e t (List b tps -> List b (tp : tps))
-> t (List b tps) -> t (List b (tp : tps))
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> t (List b tps)
forall (tps :: [k]).
(forall (tp :: k). Index tps tp -> Index sh tp)
-> List a tps -> t (List b tps)
go (\Index tps tp
ix -> Index tps tp -> Index sh tp
forall (tp :: k). Index tps tp -> Index sh tp
g (Index tps tp -> Index (tp : tps) tp
forall k (r :: [k]) (y :: k) (x :: k). Index r y -> Index (x : r) y
IndexThere Index tps tp
ix)) List a tps
rest