{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeInType #-}
{-# OPTIONS_HADDOCK hide #-}
module Data.Parameterized.Context.Unsafe
( module Data.Parameterized.Ctx
, KnownContext(..)
, Size
, sizeInt
, zeroSize
, incSize
, decSize
, extSize
, addSize
, SizeView(..)
, viewSize
, sizeToNatRepr
, Diff
, noDiff
, addDiff
, extendRight
, appendDiff
, DiffView(..)
, viewDiff
, KnownDiff(..)
, IsAppend(..)
, diffIsAppend
, Index
, indexVal
, baseIndex
, skipIndex
, lastIndex
, nextIndex
, leftIndex
, rightIndex
, extendIndex
, extendIndex'
, extendIndexAppendLeft
, forIndex
, forIndexRange
, intIndex
, IndexView(..)
, viewIndex
, IndexRange
, allRange
, indexOfRange
, dropHeadRange
, dropTailRange
, Assignment
, size
, Data.Parameterized.Context.Unsafe.replicate
, generate
, generateM
, empty
, extend
, adjust
, update
, adjustM
, AssignView(..)
, viewAssign
, (!)
, (!^)
, Data.Parameterized.Context.Unsafe.zipWith
, zipWithM
, (<++>)
, traverseWithIndex
) where
import qualified Control.Category as Cat
import Control.DeepSeq
import Control.Exception
import qualified Control.Lens as Lens
import Control.Monad.Identity (Identity(..))
import Data.Bits
import Data.Coerce
import Data.Hashable
import Data.List (intercalate)
import Data.Proxy
import Unsafe.Coerce
import Data.Kind(Type)
import Data.Parameterized.Axiom
import Data.Parameterized.Classes
import Data.Parameterized.Ctx
import Data.Parameterized.Ctx.Proofs
import Data.Parameterized.NatRepr
import Data.Parameterized.NatRepr.Internal (NatRepr(NatRepr))
import Data.Parameterized.Some
import Data.Parameterized.TraversableFC
import Data.Parameterized.TraversableFC.WithIndex
newtype Size (ctx :: Ctx k) = Size Int
type role Size nominal
sizeInt :: Size ctx -> Int
sizeInt :: Size ctx -> Int
sizeInt (Size Int
n) = Int
n
zeroSize :: Size 'EmptyCtx
zeroSize :: Size 'EmptyCtx
zeroSize = Int -> Size 'EmptyCtx
forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
0
incSize :: Size ctx -> Size (ctx '::> tp)
incSize :: Size ctx -> Size (ctx '::> tp)
incSize (Size Int
n) = Int -> Size (ctx '::> tp)
forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
decSize :: Size (ctx '::> tp) -> Size ctx
decSize :: Size (ctx '::> tp) -> Size ctx
decSize (Size Int
n) = Bool -> Size ctx -> Size ctx
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (Int -> Size ctx
forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1))
data SizeView (ctx :: Ctx k) where
ZeroSize :: SizeView 'EmptyCtx
IncSize :: !(Size ctx) -> SizeView (ctx '::> tp)
viewSize :: Size ctx -> SizeView ctx
viewSize :: Size ctx -> SizeView ctx
viewSize (Size Int
0) = SizeView 'EmptyCtx -> SizeView ctx
forall a b. a -> b
unsafeCoerce SizeView 'EmptyCtx
forall k. SizeView 'EmptyCtx
ZeroSize
viewSize (Size Int
n) = Bool -> SizeView ctx -> SizeView ctx
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (SizeView (Any '::> Any) -> SizeView ctx
forall a b. a -> b
unsafeCoerce (Size Any -> SizeView (Any '::> Any)
forall k (ctx :: Ctx k) (tp :: k).
Size ctx -> SizeView (ctx '::> tp)
IncSize (Int -> Size Any
forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1))))
sizeToNatRepr :: Size items -> NatRepr (CtxSize items)
sizeToNatRepr :: Size items -> NatRepr (CtxSize items)
sizeToNatRepr (Size Int
n) = Natural -> NatRepr (CtxSize items)
forall (n :: Nat). Natural -> NatRepr n
NatRepr (Int -> Natural
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
instance Show (Size ctx) where
show :: Size ctx -> String
show (Size Int
i) = Int -> String
forall a. Show a => a -> String
show Int
i
instance ShowF Size
class KnownContext (ctx :: Ctx k) where
knownSize :: Size ctx
instance KnownContext 'EmptyCtx where
knownSize :: Size 'EmptyCtx
knownSize = Size 'EmptyCtx
forall k. Size 'EmptyCtx
zeroSize
instance KnownContext ctx => KnownContext (ctx '::> tp) where
knownSize :: Size (ctx '::> tp)
knownSize = Size ctx -> Size (ctx '::> tp)
forall k (ctx :: Ctx k) (tp :: k). Size ctx -> Size (ctx '::> tp)
incSize Size ctx
forall k (ctx :: Ctx k). KnownContext ctx => Size ctx
knownSize
newtype Diff (l :: Ctx k) (r :: Ctx k)
= Diff { Diff l r -> Int
_contextExtSize :: Int }
type role Diff nominal nominal
noDiff :: Diff l l
noDiff :: Diff l l
noDiff = Int -> Diff l l
forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff Int
0
{-# INLINE noDiff #-}
addDiff :: Diff a b -> Diff b c -> Diff a c
addDiff :: Diff a b -> Diff b c -> Diff a c
addDiff (Diff Int
x) (Diff Int
y) = Int -> Diff a c
forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff (Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
y)
{-# INLINE addDiff #-}
extendRight :: Diff l r -> Diff l (r '::> tp)
extendRight :: Diff l r -> Diff l (r '::> tp)
extendRight (Diff Int
i) = Int -> Diff l (r '::> tp)
forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
appendDiff :: Size r -> Diff l (l <+> r)
appendDiff :: Size r -> Diff l (l <+> r)
appendDiff (Size Int
r) = Int -> Diff l (l <+> r)
forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff Int
r
instance Cat.Category Diff where
id :: Diff a a
id = Diff a a
forall k (a :: Ctx k). Diff a a
noDiff
Diff b c
j . :: Diff b c -> Diff a b -> Diff a c
. Diff a b
i = Diff a b -> Diff b c -> Diff a c
forall k (a :: Ctx k) (b :: Ctx k) (c :: Ctx k).
Diff a b -> Diff b c -> Diff a c
addDiff Diff a b
i Diff b c
j
extSize :: Size l -> Diff l r -> Size r
extSize :: Size l -> Diff l r -> Size r
extSize (Size Int
i) (Diff Int
j) = Int -> Size r
forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j)
addSize :: Size x -> Size y -> Size (x <+> y)
addSize :: Size x -> Size y -> Size (x <+> y)
addSize (Size Int
x) (Size Int
y) = Int -> Size (x <+> y)
forall k (ctx :: Ctx k). Int -> Size ctx
Size (Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
y)
data IsAppend l r where
IsAppend :: Size app -> IsAppend l (l <+> app)
diffIsAppend :: Diff l r -> IsAppend l r
diffIsAppend :: Diff l r -> IsAppend l r
diffIsAppend (Diff Int
i) = IsAppend Any (Any <+> Any) -> IsAppend l r
forall a b. a -> b
unsafeCoerce (IsAppend Any (Any <+> Any) -> IsAppend l r)
-> IsAppend Any (Any <+> Any) -> IsAppend l r
forall a b. (a -> b) -> a -> b
$ Size Any -> IsAppend Any (Any <+> Any)
forall k (app :: Ctx k) (l :: Ctx k).
Size app -> IsAppend l (l <+> app)
IsAppend (Int -> Size Any
forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
i)
data DiffView a b where
NoDiff :: DiffView a a
ExtendRightDiff :: Diff a b -> DiffView a (b ::> r)
viewDiff :: Diff a b -> DiffView a b
viewDiff :: Diff a b -> DiffView a b
viewDiff (Diff Int
i)
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = DiffView Any Any -> DiffView a b
forall a b. a -> b
unsafeCoerce DiffView Any Any
forall k (a :: Ctx k). DiffView a a
NoDiff
| Bool
otherwise = Bool -> DiffView a b -> DiffView a b
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (DiffView a b -> DiffView a b) -> DiffView a b -> DiffView a b
forall a b. (a -> b) -> a -> b
$ DiffView Any (Any '::> Any) -> DiffView a b
forall a b. a -> b
unsafeCoerce (DiffView Any (Any '::> Any) -> DiffView a b)
-> DiffView Any (Any '::> Any) -> DiffView a b
forall a b. (a -> b) -> a -> b
$ Diff Any Any -> DiffView Any (Any '::> Any)
forall k (a :: Ctx k) (b :: Ctx k) (r :: k).
Diff a b -> DiffView a (b ::> r)
ExtendRightDiff (Int -> Diff Any Any
forall k (l :: Ctx k) (r :: Ctx k). Int -> Diff l r
Diff (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1))
class KnownDiff (l :: Ctx k) (r :: Ctx k) where
knownDiff :: Diff l r
instance KnownDiff l l where
knownDiff :: Diff l l
knownDiff = Diff l l
forall k (a :: Ctx k). Diff a a
noDiff
instance {-# INCOHERENT #-} KnownDiff l r => KnownDiff l (r '::> tp) where
knownDiff :: Diff l (r '::> tp)
knownDiff = Diff l r -> Diff l (r '::> tp)
forall k (l :: Ctx k) (r :: Ctx k) (tp :: k).
Diff l r -> Diff l (r '::> tp)
extendRight Diff l r
forall k (l :: Ctx k) (r :: Ctx k). KnownDiff l r => Diff l r
knownDiff
newtype Index (ctx :: Ctx k) (tp :: k) = Index { Index ctx tp -> Int
indexVal :: Int }
type role Index nominal nominal
instance Eq (Index ctx tp) where
Index Int
i == :: Index ctx tp -> Index ctx tp -> Bool
== Index Int
j = Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j
instance TestEquality (Index ctx) where
testEquality :: Index ctx a -> Index ctx b -> Maybe (a :~: b)
testEquality (Index Int
i) (Index Int
j)
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j = (a :~: b) -> Maybe (a :~: b)
forall a. a -> Maybe a
Just a :~: b
forall k (a :: k) (b :: k). a :~: b
unsafeAxiom
| Bool
otherwise = Maybe (a :~: b)
forall a. Maybe a
Nothing
instance Ord (Index ctx tp) where
Index Int
i compare :: Index ctx tp -> Index ctx tp -> Ordering
`compare` Index Int
j = Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
i Int
j
instance OrdF (Index ctx) where
compareF :: Index ctx x -> Index ctx y -> OrderingF x y
compareF (Index Int
i) (Index Int
j)
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
j = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
LTF
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j = OrderingF Any Any -> OrderingF x y
forall a b. a -> b
unsafeCoerce OrderingF Any Any
forall k (x :: k). OrderingF x x
EQF
| Bool
otherwise = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
GTF
baseIndex :: Index ('EmptyCtx '::> tp) tp
baseIndex :: Index ('EmptyCtx '::> tp) tp
baseIndex = Int -> Index ('EmptyCtx '::> tp) tp
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
0
skipIndex :: Index ctx x -> Index (ctx '::> y) x
skipIndex :: Index ctx x -> Index (ctx '::> y) x
skipIndex (Index Int
i) = Int -> Index (ctx '::> y) x
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i
nextIndex :: Size ctx -> Index (ctx ::> tp) tp
nextIndex :: Size ctx -> Index (ctx ::> tp) tp
nextIndex Size ctx
n = Int -> Index (ctx ::> tp) tp
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (Size ctx -> Int
forall k (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n)
lastIndex :: Size (ctx ::> tp) -> Index (ctx ::> tp) tp
lastIndex :: Size (ctx ::> tp) -> Index (ctx ::> tp) tp
lastIndex Size (ctx ::> tp)
n = Int -> Index (ctx ::> tp) tp
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (Size (ctx ::> tp) -> Int
forall k (ctx :: Ctx k). Size ctx -> Int
sizeInt Size (ctx ::> tp)
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
leftIndex :: Size r -> Index l tp -> Index (l <+> r) tp
leftIndex :: Size r -> Index l tp -> Index (l <+> r) tp
leftIndex Size r
_ (Index Int
il) = Int -> Index (l <+> r) tp
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
il
rightIndex :: Size l -> Size r -> Index r tp -> Index (l <+> r) tp
rightIndex :: Size l -> Size r -> Index r tp -> Index (l <+> r) tp
rightIndex (Size Int
sl) Size r
_ (Index Int
ir) = Int -> Index (l <+> r) tp
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (Int
sl Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
ir)
{-# INLINE extendIndex #-}
extendIndex :: KnownDiff l r => Index l tp -> Index r tp
extendIndex :: Index l tp -> Index r tp
extendIndex = Diff l r -> Index l tp -> Index r tp
forall k (l :: Ctx k) (r :: Ctx k) (tp :: k).
Diff l r -> Index l tp -> Index r tp
extendIndex' Diff l r
forall k (l :: Ctx k) (r :: Ctx k). KnownDiff l r => Diff l r
knownDiff
{-# INLINE extendIndex' #-}
extendIndex' :: Diff l r -> Index l tp -> Index r tp
extendIndex' :: Diff l r -> Index l tp -> Index r tp
extendIndex' Diff l r
_ = Index l tp -> Index r tp
forall a b. a -> b
unsafeCoerce
{-# INLINE extendIndexAppendLeft #-}
extendIndexAppendLeft :: Size l -> Size r -> Index r tp -> Index (l <+> r) tp
extendIndexAppendLeft :: Size l -> Size r -> Index r tp -> Index (l <+> r) tp
extendIndexAppendLeft (Size Int
l) Size r
_ (Index Int
idx) = Int -> Index (l <+> r) tp
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
l)
forIndex :: forall ctx r
. Size ctx
-> (forall tp . r -> Index ctx tp -> r)
-> r
-> r
forIndex :: Size ctx -> (forall (tp :: k). r -> Index ctx tp -> r) -> r -> r
forIndex Size ctx
n forall (tp :: k). r -> Index ctx tp -> r
f r
r =
case Size ctx -> SizeView ctx
forall k (ctx :: Ctx k). Size ctx -> SizeView ctx
viewSize Size ctx
n of
SizeView ctx
ZeroSize -> r
r
IncSize Size ctx
p -> r -> Index ctx tp -> r
forall (tp :: k). r -> Index ctx tp -> r
f (Size ctx -> (forall (tp :: k). r -> Index ctx tp -> r) -> r -> r
forall k (ctx :: Ctx k) r.
Size ctx -> (forall (tp :: k). r -> Index ctx tp -> r) -> r -> r
forIndex Size ctx
p ((r -> Index ctx Any -> r) -> r -> Index ctx tp -> r
coerce r -> Index ctx Any -> r
forall (tp :: k). r -> Index ctx tp -> r
f) r
r) (Size ctx -> Index (ctx ::> tp) tp
forall k (ctx :: Ctx k) (tp :: k).
Size ctx -> Index (ctx ::> tp) tp
nextIndex Size ctx
p)
forIndexRange :: forall ctx r
. Int
-> Size ctx
-> (forall tp . Index ctx tp -> r -> r)
-> r
-> r
forIndexRange :: Int
-> Size ctx -> (forall (tp :: k). Index ctx tp -> r -> r) -> r -> r
forIndexRange Int
i (Size Int
n) forall (tp :: k). Index ctx tp -> r -> r
f r
r
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = r
r
| Bool
otherwise = Index ctx Any -> r -> r
forall (tp :: k). Index ctx tp -> r -> r
f (Int -> Index ctx Any
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i) (Int
-> Size ctx -> (forall (tp :: k). Index ctx tp -> r -> r) -> r -> r
forall k (ctx :: Ctx k) r.
Int
-> Size ctx -> (forall (tp :: k). Index ctx tp -> r -> r) -> r -> r
forIndexRange (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int -> Size ctx
forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
n) forall (tp :: k). Index ctx tp -> r -> r
f r
r)
intIndex :: Int -> Size ctx -> Maybe (Some (Index ctx))
intIndex :: Int -> Size ctx -> Maybe (Some (Index ctx))
intIndex Int
i Size ctx
n | Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Size ctx -> Int
forall k (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n = Some (Index ctx) -> Maybe (Some (Index ctx))
forall a. a -> Maybe a
Just (Index ctx Any -> Some (Index ctx)
forall k (f :: k -> *) (x :: k). f x -> Some f
Some (Int -> Index ctx Any
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i))
| Bool
otherwise = Maybe (Some (Index ctx))
forall a. Maybe a
Nothing
instance Show (Index ctx tp) where
show :: Index ctx tp -> String
show = Int -> String
forall a. Show a => a -> String
show (Int -> String) -> (Index ctx tp -> Int) -> Index ctx tp -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Index ctx tp -> Int
forall k (ctx :: Ctx k) (tp :: k). Index ctx tp -> Int
indexVal
instance ShowF (Index ctx)
data IndexView ctx tp where
IndexViewLast :: !(Size ctx ) -> IndexView (ctx '::> t) t
IndexViewInit :: !(Index ctx t) -> IndexView (ctx '::> u) t
deriving instance Show (IndexView ctx tp)
instance ShowF (IndexView ctx)
viewIndex :: Size ctx -> Index ctx tp -> IndexView ctx tp
viewIndex :: Size ctx -> Index ctx tp -> IndexView ctx tp
viewIndex (Size Int
sz) (Index Int
i)
| Int
sz' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
i = IndexView (Any '::> Any) Any -> IndexView ctx tp
forall a b. a -> b
unsafeCoerce (Size Any -> IndexView (Any '::> Any) Any
forall k (ctx :: Ctx k) (t :: k).
Size ctx -> IndexView (ctx '::> t) t
IndexViewLast (Int -> Size Any
forall k (ctx :: Ctx k). Int -> Size ctx
Size Int
sz'))
| Bool
otherwise = IndexView (Any '::> Any) Any -> IndexView ctx tp
forall a b. a -> b
unsafeCoerce (Index Any Any -> IndexView (Any '::> Any) Any
forall k (ctx :: Ctx k) (t :: k) (u :: k).
Index ctx t -> IndexView (ctx '::> u) t
IndexViewInit (Int -> Index Any Any
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i))
where
sz' :: Int
sz' = Int
szInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1
data IndexRange (ctx :: Ctx k) (sub :: Ctx k)
= IndexRange {-# UNPACK #-} !Int
{-# UNPACK #-} !Int
allRange :: Size ctx -> IndexRange ctx ctx
allRange :: Size ctx -> IndexRange ctx ctx
allRange (Size Int
n) = Int -> Int -> IndexRange ctx ctx
forall k (ctx :: Ctx k) (sub :: Ctx k).
Int -> Int -> IndexRange ctx sub
IndexRange Int
0 Int
n
indexOfRange :: IndexRange ctx (EmptyCtx ::> e) -> Index ctx e
indexOfRange :: IndexRange ctx (EmptyCtx ::> e) -> Index ctx e
indexOfRange (IndexRange Int
i Int
n) = Bool -> Index ctx e -> Index ctx e
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1) (Index ctx e -> Index ctx e) -> Index ctx e -> Index ctx e
forall a b. (a -> b) -> a -> b
$ Int -> Index ctx e
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
i
dropTailRange :: IndexRange ctx (x <+> y) -> Size y -> IndexRange ctx x
dropTailRange :: IndexRange ctx (x <+> y) -> Size y -> IndexRange ctx x
dropTailRange (IndexRange Int
i Int
n) (Size Int
j) = Bool -> IndexRange ctx x -> IndexRange ctx x
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
j) (IndexRange ctx x -> IndexRange ctx x)
-> IndexRange ctx x -> IndexRange ctx x
forall a b. (a -> b) -> a -> b
$ Int -> Int -> IndexRange ctx x
forall k (ctx :: Ctx k) (sub :: Ctx k).
Int -> Int -> IndexRange ctx sub
IndexRange Int
i (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
j)
dropHeadRange :: IndexRange ctx (x <+> y) -> Size x -> IndexRange ctx y
dropHeadRange :: IndexRange ctx (x <+> y) -> Size x -> IndexRange ctx y
dropHeadRange (IndexRange Int
i Int
n) (Size Int
j) = Bool -> IndexRange ctx y -> IndexRange ctx y
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
i Bool -> Bool -> Bool
&& Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
j) (IndexRange ctx y -> IndexRange ctx y)
-> IndexRange ctx y -> IndexRange ctx y
forall a b. (a -> b) -> a -> b
$ Int -> Int -> IndexRange ctx y
forall k (ctx :: Ctx k) (sub :: Ctx k).
Int -> Int -> IndexRange ctx sub
IndexRange Int
i' (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
j)
where i' :: Int
i' = Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
j
data Height = Zero | Succ Height
type family Pred (k :: Height) :: Height
type instance Pred ('Succ h) = h
data BalancedTree h (f :: k -> Type) (p :: Ctx k) where
BalLeaf :: !(f x) -> BalancedTree 'Zero f (SingleCtx x)
BalPair :: !(BalancedTree h f x)
-> !(BalancedTree h f y)
-> BalancedTree ('Succ h) f (x <+> y)
bal_size :: BalancedTree h f p -> Int
bal_size :: BalancedTree h f p -> Int
bal_size (BalLeaf f x
_) = Int
1
bal_size (BalPair BalancedTree h f x
x BalancedTree h f y
y) = BalancedTree h f x -> Int
forall k (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree h f x
x Int -> Int -> Int
forall a. Num a => a -> a -> a
+ BalancedTree h f y -> Int
forall k (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree h f y
y
instance TestEqualityFC (BalancedTree h) where
testEqualityFC :: (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x -> BalancedTree h f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (BalLeaf f x
x) (BalLeaf f x
y) = do
x :~: x
Refl <- f x -> f x -> Maybe (x :~: x)
forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test f x
x f x
y
(x :~: x) -> Maybe (x :~: x)
forall (m :: * -> *) a. Monad m => a -> m a
return x :~: x
forall k (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (BalPair BalancedTree h f x
x1 BalancedTree h f y
x2) (BalPair BalancedTree h f x
y1 BalancedTree h f y
y2) = do
x :~: x
Refl <- (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> BalancedTree h f x -> BalancedTree h f x -> Maybe (x :~: x)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BalancedTree h f x
x1 BalancedTree h f x
BalancedTree h f x
y1
y :~: y
Refl <- (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> BalancedTree h f y -> BalancedTree h f y -> Maybe (y :~: y)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BalancedTree h f y
x2 BalancedTree h f y
BalancedTree h f y
y2
(x :~: x) -> Maybe (x :~: x)
forall (m :: * -> *) a. Monad m => a -> m a
return x :~: x
forall k (a :: k). a :~: a
Refl
instance OrdFC (BalancedTree h) where
compareFC :: (forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x -> BalancedTree h f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (BalLeaf f x
x) (BalLeaf f x
y) =
OrderingF x x -> ((x ~ x) => OrderingF x y) -> OrderingF x y
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF (f x -> f x -> OrderingF x x
forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test f x
x f x
y) (((x ~ x) => OrderingF x y) -> OrderingF x y)
-> ((x ~ x) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$ (x ~ x) => OrderingF x y
forall k (x :: k). OrderingF x x
EQF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (BalPair BalancedTree h f x
x1 BalancedTree h f y
x2) (BalPair BalancedTree h f x
y1 BalancedTree h f y
y2) =
OrderingF x x -> ((x ~ x) => OrderingF x y) -> OrderingF x y
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF ((forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> BalancedTree h f x -> BalancedTree h f x -> OrderingF x x
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BalancedTree h f x
x1 BalancedTree h f x
BalancedTree h f x
y1) (((x ~ x) => OrderingF x y) -> OrderingF x y)
-> ((x ~ x) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$
OrderingF y y -> ((y ~ y) => OrderingF x y) -> OrderingF x y
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF ((forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> BalancedTree h f y -> BalancedTree h f y -> OrderingF y y
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BalancedTree h f y
x2 BalancedTree h f y
BalancedTree h f y
y2) (((y ~ y) => OrderingF x y) -> OrderingF x y)
-> ((y ~ y) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$
(y ~ y) => OrderingF x y
forall k (x :: k). OrderingF x x
EQF
instance HashableF f => HashableF (BalancedTree h f) where
hashWithSaltF :: Int -> BalancedTree h f tp -> Int
hashWithSaltF Int
s BalancedTree h f tp
t =
case BalancedTree h f tp
t of
BalLeaf f x
x -> Int
s Int -> f x -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` f x
x
BalPair BalancedTree h f x
x BalancedTree h f y
y -> Int
s Int -> BalancedTree h f x -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BalancedTree h f x
x Int -> BalancedTree h f y -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BalancedTree h f y
y
fmap_bal :: (forall tp . f tp -> g tp)
-> BalancedTree h f c
-> BalancedTree h g c
fmap_bal :: (forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
fmap_bal = (forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
forall k (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go
where go :: (forall tp . f tp -> g tp)
-> BalancedTree h f c
-> BalancedTree h g c
go :: (forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go forall (tp :: k). f tp -> g tp
f (BalLeaf f x
x) = g x -> BalancedTree 'Zero g (SingleCtx x)
forall k (f :: k -> *) (x :: k).
f x -> BalancedTree 'Zero f (SingleCtx x)
BalLeaf (f x -> g x
forall (tp :: k). f tp -> g tp
f f x
x)
go forall (tp :: k). f tp -> g tp
f (BalPair BalancedTree h f x
x BalancedTree h f y
y) = BalancedTree h g x
-> BalancedTree h g y -> BalancedTree ('Succ h) g (x <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair ((forall (tp :: k). f tp -> g tp)
-> BalancedTree h f x -> BalancedTree h g x
forall k (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go forall (tp :: k). f tp -> g tp
f BalancedTree h f x
x) ((forall (tp :: k). f tp -> g tp)
-> BalancedTree h f y -> BalancedTree h g y
forall k (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
go forall (tp :: k). f tp -> g tp
f BalancedTree h f y
y)
{-# INLINABLE fmap_bal #-}
traverse_bal :: Applicative m
=> (forall tp . f tp -> m (g tp))
-> BalancedTree h f c
-> m (BalancedTree h g c)
traverse_bal :: (forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
traverse_bal = (forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go
where go :: Applicative m
=> (forall tp . f tp -> m (g tp))
-> BalancedTree h f c
-> m (BalancedTree h g c)
go :: (forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go forall (tp :: k). f tp -> m (g tp)
f (BalLeaf f x
x) = g x -> BalancedTree 'Zero g (SingleCtx x)
forall k (f :: k -> *) (x :: k).
f x -> BalancedTree 'Zero f (SingleCtx x)
BalLeaf (g x -> BalancedTree 'Zero g (SingleCtx x))
-> m (g x) -> m (BalancedTree 'Zero g (SingleCtx x))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f x -> m (g x)
forall (tp :: k). f tp -> m (g tp)
f f x
x
go forall (tp :: k). f tp -> m (g tp)
f (BalPair BalancedTree h f x
x BalancedTree h f y
y) = BalancedTree h g x -> BalancedTree h g y -> BalancedTree h g c
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair (BalancedTree h g x -> BalancedTree h g y -> BalancedTree h g c)
-> m (BalancedTree h g x)
-> m (BalancedTree h g y -> BalancedTree h g c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f x -> m (BalancedTree h g x)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go forall (tp :: k). f tp -> m (g tp)
f BalancedTree h f x
x m (BalancedTree h g y -> BalancedTree h g c)
-> m (BalancedTree h g y) -> m (BalancedTree h g c)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f y -> m (BalancedTree h g y)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
go forall (tp :: k). f tp -> m (g tp)
f BalancedTree h f y
y
{-# INLINABLE traverse_bal #-}
instance ShowF f => Show (BalancedTree h f tp) where
show :: BalancedTree h f tp -> String
show (BalLeaf f x
x) = f x -> String
forall k (f :: k -> *) (tp :: k). ShowF f => f tp -> String
showF f x
x
show (BalPair BalancedTree h f x
x BalancedTree h f y
y) = String
"BalPair " String -> ShowS
forall a. [a] -> [a] -> [a]
Prelude.++ BalancedTree h f x -> String
forall a. Show a => a -> String
show BalancedTree h f x
x String -> ShowS
forall a. [a] -> [a] -> [a]
Prelude.++ String
" " String -> ShowS
forall a. [a] -> [a] -> [a]
Prelude.++ BalancedTree h f y -> String
forall a. Show a => a -> String
show BalancedTree h f y
y
instance ShowF f => ShowF (BalancedTree h f)
unsafe_bal_generate :: forall ctx h f t
. Int
-> Int
-> (forall tp . Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate :: Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate Int
h Int
o forall (tp :: k). Index ctx tp -> f tp
f
| Int
h Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = String -> BalancedTree h f t
forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bal_generate given negative height"
| Int
h Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = BalancedTree 'Zero f (SingleCtx Any) -> BalancedTree h f t
forall a b. a -> b
unsafeCoerce (BalancedTree 'Zero f (SingleCtx Any) -> BalancedTree h f t)
-> BalancedTree 'Zero f (SingleCtx Any) -> BalancedTree h f t
forall a b. (a -> b) -> a -> b
$ f Any -> BalancedTree 'Zero f (SingleCtx Any)
forall k (f :: k -> *) (x :: k).
f x -> BalancedTree 'Zero f (SingleCtx x)
BalLeaf (Index ctx Any -> f Any
forall (tp :: k). Index ctx tp -> f tp
f (Int -> Index ctx Any
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
o))
| Bool
otherwise =
let l :: BalancedTree Any f Any
l = Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree Any f Any
forall k (ctx :: Ctx k) (h :: Height) (f :: k -> *) (t :: Ctx k).
Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Int
o forall (tp :: k). Index ctx tp -> f tp
f
o' :: Int
o' = Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftL` (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
u :: BalancedTree Any f Any
u = Bool -> BalancedTree Any f Any -> BalancedTree Any f Any
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ BalancedTree Any f Any -> Int
forall k (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree Any f Any
l Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
o') (BalancedTree Any f Any -> BalancedTree Any f Any)
-> BalancedTree Any f Any -> BalancedTree Any f Any
forall a b. (a -> b) -> a -> b
$ Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree Any f Any
forall k (ctx :: Ctx k) (h :: Height) (f :: k -> *) (t :: Ctx k).
Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Int
o' forall (tp :: k). Index ctx tp -> f tp
f
in BalancedTree ('Succ Any) f (Any <+> Any) -> BalancedTree h f t
forall a b. a -> b
unsafeCoerce (BalancedTree ('Succ Any) f (Any <+> Any) -> BalancedTree h f t)
-> BalancedTree ('Succ Any) f (Any <+> Any) -> BalancedTree h f t
forall a b. (a -> b) -> a -> b
$ BalancedTree Any f Any
-> BalancedTree Any f Any
-> BalancedTree ('Succ Any) f (Any <+> Any)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair BalancedTree Any f Any
l BalancedTree Any f Any
u
unsafe_bal_generateM :: forall m ctx h f t
. Applicative m
=> Int
-> Int
-> (forall x . Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM :: Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM Int
h Int
o forall (x :: k). Index ctx x -> m (f x)
f
| Int
h Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = BalancedTree 'Zero f (SingleCtx Any) -> BalancedTree h f t
forall a b. a -> b
unsafeCoerce (BalancedTree 'Zero f (SingleCtx Any) -> BalancedTree h f t)
-> (f Any -> BalancedTree 'Zero f (SingleCtx Any))
-> f Any
-> BalancedTree h f t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f Any -> BalancedTree 'Zero f (SingleCtx Any)
forall k (f :: k -> *) (x :: k).
f x -> BalancedTree 'Zero f (SingleCtx x)
BalLeaf (f Any -> BalancedTree h f t)
-> m (f Any) -> m (BalancedTree h f t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Index ctx Any -> m (f Any)
forall (x :: k). Index ctx x -> m (f x)
f (Int -> Index ctx Any
forall k (ctx :: Ctx k) (tp :: k). Int -> Index ctx tp
Index Int
o)
| Bool
otherwise =
let o' :: Int
o' = Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftL` (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
g :: BalancedTree Any f Any
-> BalancedTree Any f Any -> BalancedTree h f t
g BalancedTree Any f Any
lv BalancedTree Any f Any
uv = Bool -> BalancedTree h f t -> BalancedTree h f t
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
o' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ BalancedTree Any f Any -> Int
forall k (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree Any f Any
lv) (BalancedTree h f t -> BalancedTree h f t)
-> BalancedTree h f t -> BalancedTree h f t
forall a b. (a -> b) -> a -> b
$
BalancedTree ('Succ Any) f (Any <+> Any) -> BalancedTree h f t
forall a b. a -> b
unsafeCoerce (BalancedTree Any f Any
-> BalancedTree Any f Any
-> BalancedTree ('Succ Any) f (Any <+> Any)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair BalancedTree Any f Any
lv BalancedTree Any f Any
uv)
in BalancedTree Any f Any
-> BalancedTree Any f Any -> BalancedTree h f t
g (BalancedTree Any f Any
-> BalancedTree Any f Any -> BalancedTree h f t)
-> m (BalancedTree Any f Any)
-> m (BalancedTree Any f Any -> BalancedTree h f t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree Any f Any)
forall k (m :: * -> *) (ctx :: Ctx k) (h :: Height) (f :: k -> *)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Int
o forall (x :: k). Index ctx x -> m (f x)
f
m (BalancedTree Any f Any -> BalancedTree h f t)
-> m (BalancedTree Any f Any) -> m (BalancedTree h f t)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree Any f Any)
forall k (m :: * -> *) (ctx :: Ctx k) (h :: Height) (f :: k -> *)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Int
o' forall (x :: k). Index ctx x -> m (f x)
f
unsafe_bal_index :: BalancedTree h f a
-> Int
-> Int
-> f tp
unsafe_bal_index :: BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f a
_ Int
j Int
i
| Int -> Bool -> Bool
seq Int
j (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Int -> Bool -> Bool
seq Int
i (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Bool
False = String -> f tp
forall a. (?callStack::CallStack) => String -> a
error String
"bad unsafe_bal_index"
unsafe_bal_index (BalLeaf f x
u) Int
_ Int
i = Bool -> f tp -> f tp
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0) (f tp -> f tp) -> f tp -> f tp
forall a b. (a -> b) -> a -> b
$ f x -> f tp
forall a b. a -> b
unsafeCoerce f x
u
unsafe_bal_index (BalPair BalancedTree h f x
x BalancedTree h f y
y) Int
j Int
i
| Int
j Int -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
`testBit` (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) = BalancedTree h f y -> Int -> Int -> f tp
forall k (h :: Height) (f :: k -> *) (a :: Ctx k) (tp :: k).
BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f y
y Int
j (Int -> f tp) -> Int -> f tp
forall a b. (a -> b) -> a -> b
$! (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
| Bool
otherwise = BalancedTree h f x -> Int -> Int -> f tp
forall k (h :: Height) (f :: k -> *) (a :: Ctx k) (tp :: k).
BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f x
x Int
j (Int -> f tp) -> Int -> f tp
forall a b. (a -> b) -> a -> b
$! (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
unsafe_bal_adjust :: Functor m
=> (f x -> m (f y))
-> BalancedTree h f a
-> Int
-> Int
-> m (BalancedTree h f b)
unsafe_bal_adjust :: (f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f (BalLeaf f x
u) Int
_ Int
i = Bool -> m (BalancedTree h f b) -> m (BalancedTree h f b)
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0) (m (BalancedTree h f b) -> m (BalancedTree h f b))
-> m (BalancedTree h f b) -> m (BalancedTree h f b)
forall a b. (a -> b) -> a -> b
$
(BalancedTree 'Zero f (SingleCtx y) -> BalancedTree h f b
forall a b. a -> b
unsafeCoerce (BalancedTree 'Zero f (SingleCtx y) -> BalancedTree h f b)
-> (f y -> BalancedTree 'Zero f (SingleCtx y))
-> f y
-> BalancedTree h f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f y -> BalancedTree 'Zero f (SingleCtx y)
forall k (f :: k -> *) (x :: k).
f x -> BalancedTree 'Zero f (SingleCtx x)
BalLeaf (f y -> BalancedTree h f b) -> m (f y) -> m (BalancedTree h f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (f x -> m (f y)
f (f x -> f x
forall a b. a -> b
unsafeCoerce f x
u)))
unsafe_bal_adjust f x -> m (f y)
f (BalPair BalancedTree h f x
x BalancedTree h f y
y) Int
j Int
i
| Int
j Int -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
`testBit` (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) = (BalancedTree ('Succ h) f (x <+> Any) -> BalancedTree h f b
forall a b. a -> b
unsafeCoerce (BalancedTree ('Succ h) f (x <+> Any) -> BalancedTree h f b)
-> (BalancedTree h f Any -> BalancedTree ('Succ h) f (x <+> Any))
-> BalancedTree h f Any
-> BalancedTree h f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BalancedTree h f x
-> BalancedTree h f Any -> BalancedTree ('Succ h) f (x <+> Any)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair BalancedTree h f x
x (BalancedTree h f Any -> BalancedTree h f b)
-> m (BalancedTree h f Any) -> m (BalancedTree h f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((f x -> m (f y))
-> BalancedTree h f y -> Int -> Int -> m (BalancedTree h f Any)
forall k (m :: * -> *) (f :: k -> *) (x :: k) (y :: k)
(h :: Height) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f BalancedTree h f y
y Int
j (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)))
| Bool
otherwise = (BalancedTree ('Succ h) f (Any <+> y) -> BalancedTree h f b
forall a b. a -> b
unsafeCoerce (BalancedTree ('Succ h) f (Any <+> y) -> BalancedTree h f b)
-> (BalancedTree h f Any -> BalancedTree ('Succ h) f (Any <+> y))
-> BalancedTree h f Any
-> BalancedTree h f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (BalancedTree h f Any
-> BalancedTree h f y -> BalancedTree ('Succ h) f (Any <+> y))
-> BalancedTree h f y
-> BalancedTree h f Any
-> BalancedTree ('Succ h) f (Any <+> y)
forall a b c. (a -> b -> c) -> b -> a -> c
flip BalancedTree h f Any
-> BalancedTree h f y -> BalancedTree ('Succ h) f (Any <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair BalancedTree h f y
y (BalancedTree h f Any -> BalancedTree h f b)
-> m (BalancedTree h f Any) -> m (BalancedTree h f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((f x -> m (f y))
-> BalancedTree h f x -> Int -> Int -> m (BalancedTree h f Any)
forall k (m :: * -> *) (f :: k -> *) (x :: k) (y :: k)
(h :: Height) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f BalancedTree h f x
x Int
j (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)))
{-# SPECIALIZE unsafe_bal_adjust
:: (f x -> Identity (f y))
-> BalancedTree h f a
-> Int
-> Int
-> Identity (BalancedTree h f b)
#-}
bal_zipWithM :: Applicative m
=> (forall x . f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM :: (forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (BalLeaf f x
x) (BalLeaf g x
y) = h x -> BalancedTree 'Zero h (SingleCtx x)
forall k (f :: k -> *) (x :: k).
f x -> BalancedTree 'Zero f (SingleCtx x)
BalLeaf (h x -> BalancedTree 'Zero h (SingleCtx x))
-> m (h x) -> m (BalancedTree 'Zero h (SingleCtx x))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f x -> g x -> m (h x)
forall (x :: k). f x -> g x -> m (h x)
f f x
x g x
g x
y
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (BalPair BalancedTree h f x
x1 BalancedTree h f y
x2) (BalPair BalancedTree h g x
y1 BalancedTree h g y
y2) =
BalancedTree h h x -> BalancedTree h h y -> BalancedTree u h a
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair (BalancedTree h h x -> BalancedTree h h y -> BalancedTree u h a)
-> m (BalancedTree h h x)
-> m (BalancedTree h h y -> BalancedTree u h a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree h f x
-> BalancedTree h g x
-> m (BalancedTree h h x)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BalancedTree h f x
x1 (BalancedTree h g x -> BalancedTree h g x
forall a b. a -> b
unsafeCoerce BalancedTree h g x
y1)
m (BalancedTree h h y -> BalancedTree u h a)
-> m (BalancedTree h h y) -> m (BalancedTree u h a)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree h f y
-> BalancedTree h g y
-> m (BalancedTree h h y)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BalancedTree h f y
x2 (BalancedTree h g y -> BalancedTree h g y
forall a b. a -> b
unsafeCoerce BalancedTree h g y
y2)
{-# INLINABLE bal_zipWithM #-}
data BinomialTree (h::Height) (f :: k -> Type) :: Ctx k -> Type where
Empty :: BinomialTree h f EmptyCtx
PlusOne :: !Int
-> !(BinomialTree ('Succ h) f x)
-> !(BalancedTree h f y)
-> BinomialTree h f (x <+> y)
PlusZero :: !Int
-> !(BinomialTree ('Succ h) f x)
-> BinomialTree h f x
tsize :: BinomialTree h f a -> Int
tsize :: BinomialTree h f a -> Int
tsize BinomialTree h f a
Empty = Int
0
tsize (PlusOne Int
s BinomialTree ('Succ h) f x
_ BalancedTree h f y
_) = Int
2Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1
tsize (PlusZero Int
s BinomialTree ('Succ h) f a
_) = Int
2Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
s
t_cnt_size :: BinomialTree h f a -> Int
t_cnt_size :: BinomialTree h f a -> Int
t_cnt_size BinomialTree h f a
Empty = Int
0
t_cnt_size (PlusOne Int
_ BinomialTree ('Succ h) f x
l BalancedTree h f y
r) = BinomialTree ('Succ h) f x -> Int
forall k (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
t_cnt_size BinomialTree ('Succ h) f x
l Int -> Int -> Int
forall a. Num a => a -> a -> a
+ BalancedTree h f y -> Int
forall k (h :: Height) (f :: k -> *) (p :: Ctx k).
BalancedTree h f p -> Int
bal_size BalancedTree h f y
r
t_cnt_size (PlusZero Int
_ BinomialTree ('Succ h) f a
l) = BinomialTree ('Succ h) f a -> Int
forall k (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
t_cnt_size BinomialTree ('Succ h) f a
l
append :: BinomialTree h f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
append :: BinomialTree h f x
-> BalancedTree h f y -> BinomialTree h f (x <+> y)
append BinomialTree h f x
Empty BalancedTree h f y
y = Int
-> BinomialTree ('Succ h) f EmptyCtx
-> BalancedTree h f y
-> BinomialTree h f (EmptyCtx <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
0 BinomialTree ('Succ h) f EmptyCtx
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty BalancedTree h f y
y
append (PlusOne Int
_ BinomialTree ('Succ h) f x
t BalancedTree h f y
x) BalancedTree h f y
y =
case BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BalancedTree h f y
-> (x <+> (y <+> y)) :~: ((x <+> y) <+> y)
forall k (p :: Ctx k -> *) (x :: Ctx k) (q :: Ctx k -> *)
(y :: Ctx k) (r :: Ctx k -> *) (z :: Ctx k).
p x -> q y -> r z -> (x <+> (y <+> z)) :~: ((x <+> y) <+> z)
assoc BinomialTree ('Succ h) f x
t BalancedTree h f y
x BalancedTree h f y
y of
(x <+> (y <+> y)) :~: ((x <+> y) <+> y)
Refl ->
let t' :: BinomialTree ('Succ h) f (x <+> (y <+> y))
t' = BinomialTree ('Succ h) f x
-> BalancedTree ('Succ h) f (y <+> y)
-> BinomialTree ('Succ h) f (x <+> (y <+> y))
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x
-> BalancedTree h f y -> BinomialTree h f (x <+> y)
append BinomialTree ('Succ h) f x
t (BalancedTree h f y
-> BalancedTree h f y -> BalancedTree ('Succ h) f (y <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BalancedTree h f x
-> BalancedTree h f y -> BalancedTree ('Succ h) f (x <+> y)
BalPair BalancedTree h f y
x BalancedTree h f y
y)
in Int
-> BinomialTree ('Succ h) f (x <+> (y <+> y))
-> BinomialTree h f (x <+> (y <+> y))
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero (BinomialTree ('Succ h) f (x <+> (y <+> y)) -> Int
forall k (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
tsize BinomialTree ('Succ h) f (x <+> (y <+> y))
t') BinomialTree ('Succ h) f (x <+> (y <+> y))
t'
append (PlusZero Int
s BinomialTree ('Succ h) f x
t) BalancedTree h f y
x = Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
x
instance TestEqualityFC (BinomialTree h) where
testEqualityFC :: (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BinomialTree h f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
_ BinomialTree h f x
Empty BinomialTree h f y
Empty = (x :~: x) -> Maybe (x :~: x)
forall (m :: * -> *) a. Monad m => a -> m a
return x :~: x
forall k (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (PlusZero Int
_ BinomialTree ('Succ h) f x
x1) (PlusZero Int
_ BinomialTree ('Succ h) f y
y1) = do
x :~: y
Refl <- (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> BinomialTree ('Succ h) f x
-> BinomialTree ('Succ h) f y
-> Maybe (x :~: y)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f y
y1
(x :~: x) -> Maybe (x :~: x)
forall (m :: * -> *) a. Monad m => a -> m a
return x :~: x
forall k (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (PlusOne Int
_ BinomialTree ('Succ h) f x
x1 BalancedTree h f y
x2) (PlusOne Int
_ BinomialTree ('Succ h) f x
y1 BalancedTree h f y
y2) = do
x :~: x
Refl <- (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> BinomialTree ('Succ h) f x
-> BinomialTree ('Succ h) f x
-> Maybe (x :~: x)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f x
y1
y :~: y
Refl <- (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> BalancedTree h f y -> BalancedTree h f y -> Maybe (y :~: y)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BalancedTree h f y
x2 BalancedTree h f y
y2
(x :~: x) -> Maybe (x :~: x)
forall (m :: * -> *) a. Monad m => a -> m a
return x :~: x
forall k (a :: k). a :~: a
Refl
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
_ BinomialTree h f x
_ BinomialTree h f y
_ = Maybe (x :~: y)
forall a. Maybe a
Nothing
instance OrdFC (BinomialTree h) where
compareFC :: (forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BinomialTree h f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
Empty BinomialTree h f y
Empty = OrderingF x y
forall k (x :: k). OrderingF x x
EQF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
Empty BinomialTree h f y
_ = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
LTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
_ BinomialTree h f y
Empty = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
GTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (PlusZero Int
_ BinomialTree ('Succ h) f x
x1) (PlusZero Int
_ BinomialTree ('Succ h) f y
y1) =
OrderingF x y -> ((x ~ y) => OrderingF x y) -> OrderingF x y
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF ((forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> BinomialTree ('Succ h) f x
-> BinomialTree ('Succ h) f y
-> OrderingF x y
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f y
y1) (((x ~ y) => OrderingF x y) -> OrderingF x y)
-> ((x ~ y) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$ (x ~ y) => OrderingF x y
forall k (x :: k). OrderingF x x
EQF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ PlusZero{} BinomialTree h f y
_ = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
LTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
_ BinomialTree h f x
_ PlusZero{} = OrderingF x y
forall k (x :: k) (y :: k). OrderingF x y
GTF
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (PlusOne Int
_ BinomialTree ('Succ h) f x
x1 BalancedTree h f y
x2) (PlusOne Int
_ BinomialTree ('Succ h) f x
y1 BalancedTree h f y
y2) =
OrderingF x x -> ((x ~ x) => OrderingF x y) -> OrderingF x y
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF ((forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> BinomialTree ('Succ h) f x
-> BinomialTree ('Succ h) f x
-> OrderingF x x
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BinomialTree ('Succ h) f x
x1 BinomialTree ('Succ h) f x
y1) (((x ~ x) => OrderingF x y) -> OrderingF x y)
-> ((x ~ x) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$
OrderingF y y -> ((y ~ y) => OrderingF x y) -> OrderingF x y
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF ((forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> BalancedTree h f y -> BalancedTree h f y -> OrderingF y y
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BalancedTree h f y
x2 BalancedTree h f y
y2) (((y ~ y) => OrderingF x y) -> OrderingF x y)
-> ((y ~ y) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$
(y ~ y) => OrderingF x y
forall k (x :: k). OrderingF x x
EQF
instance HashableF f => HashableF (BinomialTree h f) where
hashWithSaltF :: Int -> BinomialTree h f tp -> Int
hashWithSaltF Int
s BinomialTree h f tp
t =
case BinomialTree h f tp
t of
BinomialTree h f tp
Empty -> Int
s
PlusZero Int
_ BinomialTree ('Succ h) f tp
x -> Int
s Int -> BinomialTree ('Succ h) f tp -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BinomialTree ('Succ h) f tp
x
PlusOne Int
_ BinomialTree ('Succ h) f x
x BalancedTree h f y
y -> Int
s Int -> BinomialTree ('Succ h) f x -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BinomialTree ('Succ h) f x
x Int -> BalancedTree h f y -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
`hashWithSaltF` BalancedTree h f y
y
fmap_bin :: (forall tp . f tp -> g tp)
-> BinomialTree h f c
-> BinomialTree h g c
fmap_bin :: (forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (tp :: k). f tp -> g tp
_ BinomialTree h f c
Empty = BinomialTree h g c
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
fmap_bin forall (tp :: k). f tp -> g tp
f (PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
x) = Int
-> BinomialTree ('Succ h) g x
-> BalancedTree h g y
-> BinomialTree h g (x <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
s ((forall (tp :: k). f tp -> g tp)
-> BinomialTree ('Succ h) f x -> BinomialTree ('Succ h) g x
forall k (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (tp :: k). f tp -> g tp
f BinomialTree ('Succ h) f x
t) ((forall (tp :: k). f tp -> g tp)
-> BalancedTree h f y -> BalancedTree h g y
forall k (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BalancedTree h f c -> BalancedTree h g c
fmap_bal forall (tp :: k). f tp -> g tp
f BalancedTree h f y
x)
fmap_bin forall (tp :: k). f tp -> g tp
f (PlusZero Int
s BinomialTree ('Succ h) f c
t) = Int -> BinomialTree ('Succ h) g c -> BinomialTree h g c
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s ((forall (tp :: k). f tp -> g tp)
-> BinomialTree ('Succ h) f c -> BinomialTree ('Succ h) g c
forall k (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (tp :: k). f tp -> g tp
f BinomialTree ('Succ h) f c
t)
{-# INLINABLE fmap_bin #-}
traverse_bin :: Applicative m
=> (forall tp . f tp -> m (g tp))
-> BinomialTree h f c
-> m (BinomialTree h g c)
traverse_bin :: (forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (tp :: k). f tp -> m (g tp)
_ BinomialTree h f c
Empty = BinomialTree h g EmptyCtx -> m (BinomialTree h g EmptyCtx)
forall (f :: * -> *) a. Applicative f => a -> f a
pure BinomialTree h g EmptyCtx
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
traverse_bin forall (tp :: k). f tp -> m (g tp)
f (PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
x) = Int
-> BinomialTree ('Succ h) g x
-> BalancedTree h g y
-> BinomialTree h g (x <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
s (BinomialTree ('Succ h) g x
-> BalancedTree h g y -> BinomialTree h g c)
-> m (BinomialTree ('Succ h) g x)
-> m (BalancedTree h g y -> BinomialTree h g c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (tp :: k). f tp -> m (g tp))
-> BinomialTree ('Succ h) f x -> m (BinomialTree ('Succ h) g x)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (tp :: k). f tp -> m (g tp)
f BinomialTree ('Succ h) f x
t m (BalancedTree h g y -> BinomialTree h g c)
-> m (BalancedTree h g y) -> m (BinomialTree h g c)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f y -> m (BalancedTree h g y)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BalancedTree h f c -> m (BalancedTree h g c)
traverse_bal forall (tp :: k). f tp -> m (g tp)
f BalancedTree h f y
x
traverse_bin forall (tp :: k). f tp -> m (g tp)
f (PlusZero Int
s BinomialTree ('Succ h) f c
t) = Int -> BinomialTree ('Succ h) g c -> BinomialTree h g c
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s (BinomialTree ('Succ h) g c -> BinomialTree h g c)
-> m (BinomialTree ('Succ h) g c) -> m (BinomialTree h g c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (tp :: k). f tp -> m (g tp))
-> BinomialTree ('Succ h) f c -> m (BinomialTree ('Succ h) g c)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (tp :: k). f tp -> m (g tp)
f BinomialTree ('Succ h) f c
t
{-# INLINABLE traverse_bin #-}
unsafe_bin_generate :: forall h f ctx t
. Int
-> Int
-> (forall x . Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate :: Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate Int
sz Int
h forall (x :: k). Index ctx x -> f x
f
| Int
sz Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = BinomialTree Any Any 'EmptyCtx -> BinomialTree h f t
forall a b. a -> b
unsafeCoerce BinomialTree Any Any 'EmptyCtx
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
| Int
sz Int -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
`testBit` Int
0 =
let s :: Int
s = Int
sz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: BinomialTree ('Succ Any) f Any
t = Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree ('Succ Any) f Any
forall k (h :: Height) (f :: k -> *) (ctx :: Ctx k) (t :: Ctx k).
Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate Int
s (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> f x
f
o :: Int
o = Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2Int -> Int -> Int
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
u :: BalancedTree Any f Any
u = Bool -> BalancedTree Any f Any -> BalancedTree Any f Any
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
o Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== BinomialTree ('Succ Any) f Any -> Int
forall k (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
t_cnt_size BinomialTree ('Succ Any) f Any
t) (BalancedTree Any f Any -> BalancedTree Any f Any)
-> BalancedTree Any f Any -> BalancedTree Any f Any
forall a b. (a -> b) -> a -> b
$ Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BalancedTree Any f Any
forall k (ctx :: Ctx k) (h :: Height) (f :: k -> *) (t :: Ctx k).
Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BalancedTree h f t
unsafe_bal_generate Int
h Int
o forall (x :: k). Index ctx x -> f x
f
in BinomialTree Any f (Any <+> Any) -> BinomialTree h f t
forall a b. a -> b
unsafeCoerce (Int
-> BinomialTree ('Succ Any) f Any
-> BalancedTree Any f Any
-> BinomialTree Any f (Any <+> Any)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
s BinomialTree ('Succ Any) f Any
t BalancedTree Any f Any
u)
| Bool
otherwise =
let s :: Int
s = Int
sz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: BinomialTree ('Succ h) f t
t = Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree ('Succ h) f t
forall k (h :: Height) (f :: k -> *) (ctx :: Ctx k) (t :: Ctx k).
Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate (Int
sz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` Int
1) (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> f x
f
r :: BinomialTree h f t
r :: BinomialTree h f t
r = Int -> BinomialTree ('Succ h) f t -> BinomialTree h f t
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s BinomialTree ('Succ h) f t
t
in BinomialTree h f t
r
unsafe_bin_generateM :: forall m h f ctx t
. Applicative m
=> Int
-> Int
-> (forall x . Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM :: Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM Int
sz Int
h forall (x :: k). Index ctx x -> m (f x)
f
| Int
sz Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = BinomialTree h f t -> m (BinomialTree h f t)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (BinomialTree Any Any 'EmptyCtx -> BinomialTree h f t
forall a b. a -> b
unsafeCoerce BinomialTree Any Any 'EmptyCtx
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty)
| Int
sz Int -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
`testBit` Int
0 =
let s :: Int
s = Int
sz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: m (BinomialTree Any f Any)
t = Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree Any f Any)
forall k (m :: * -> *) (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM Int
s (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> m (f x)
f
o :: Int
o = Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2Int -> Int -> Int
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
u :: m (BalancedTree Any f Any)
u = Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree Any f Any)
forall k (m :: * -> *) (ctx :: Ctx k) (h :: Height) (f :: k -> *)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BalancedTree h f t)
unsafe_bal_generateM Int
h Int
o forall (x :: k). Index ctx x -> m (f x)
f
r :: m (BinomialTree h f t)
r = (BinomialTree ('Succ Any) Any Any
-> BalancedTree Any Any Any -> BinomialTree Any Any (Any <+> Any))
-> BinomialTree Any f Any
-> BalancedTree Any f Any
-> BinomialTree h f t
forall a b. a -> b
unsafeCoerce (Int
-> BinomialTree ('Succ Any) Any Any
-> BalancedTree Any Any Any
-> BinomialTree Any Any (Any <+> Any)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
s) (BinomialTree Any f Any
-> BalancedTree Any f Any -> BinomialTree h f t)
-> m (BinomialTree Any f Any)
-> m (BalancedTree Any f Any -> BinomialTree h f t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (BinomialTree Any f Any)
t m (BalancedTree Any f Any -> BinomialTree h f t)
-> m (BalancedTree Any f Any) -> m (BinomialTree h f t)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> m (BalancedTree Any f Any)
u
in m (BinomialTree h f t)
r
| Bool
otherwise =
let s :: Int
s = Int
sz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` Int
1
t :: m (BinomialTree ('Succ h) f t)
t = Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree ('Succ h) f t)
forall k (m :: * -> *) (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM Int
s (Int
hInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) forall (x :: k). Index ctx x -> m (f x)
f
r :: m (BinomialTree h f t)
r :: m (BinomialTree h f t)
r = Int -> BinomialTree ('Succ h) f t -> BinomialTree h f t
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s (BinomialTree ('Succ h) f t -> BinomialTree h f t)
-> m (BinomialTree ('Succ h) f t) -> m (BinomialTree h f t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (BinomialTree ('Succ h) f t)
t
in m (BinomialTree h f t)
r
data DropResult f (ctx :: Ctx k) where
DropEmpty :: DropResult f EmptyCtx
DropExt :: BinomialTree 'Zero f x
-> f y
-> DropResult f (x ::> y)
bal_drop :: forall h f x y
. BinomialTree h f x
-> BalancedTree h f y
-> DropResult f (x <+> y)
bal_drop :: BinomialTree h f x -> BalancedTree h f y -> DropResult f (x <+> y)
bal_drop BinomialTree h f x
t (BalLeaf f x
e) = BinomialTree 'Zero f x -> f x -> DropResult f (x ::> x)
forall k (f :: k -> *) (x :: Ctx k) (y :: k).
BinomialTree 'Zero f x -> f y -> DropResult f (x ::> y)
DropExt BinomialTree h f x
BinomialTree 'Zero f x
t f x
e
bal_drop BinomialTree h f x
t (BalPair BalancedTree h f x
x BalancedTree h f y
y) =
DropResult f ((Any <+> x) <+> y) -> DropResult f (x <+> y)
forall a b. a -> b
unsafeCoerce (BinomialTree h f (Any <+> x)
-> BalancedTree h f y -> DropResult f ((Any <+> x) <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BalancedTree h f y -> DropResult f (x <+> y)
bal_drop (Int
-> BinomialTree ('Succ h) f Any
-> BalancedTree h f x
-> BinomialTree h f (Any <+> x)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne (BinomialTree h f x -> Int
forall k (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
tsize BinomialTree h f x
t) (BinomialTree h f x -> BinomialTree ('Succ h) f Any
forall a b. a -> b
unsafeCoerce BinomialTree h f x
t) BalancedTree h f x
x) BalancedTree h f y
y)
bin_drop :: forall h f ctx
. BinomialTree h f ctx
-> DropResult f ctx
bin_drop :: BinomialTree h f ctx -> DropResult f ctx
bin_drop BinomialTree h f ctx
Empty = DropResult f ctx
forall k (f :: k -> *). DropResult f EmptyCtx
DropEmpty
bin_drop (PlusZero Int
_ BinomialTree ('Succ h) f ctx
u) = BinomialTree ('Succ h) f ctx -> DropResult f ctx
forall k (h :: Height) (f :: k -> *) (ctx :: Ctx k).
BinomialTree h f ctx -> DropResult f ctx
bin_drop BinomialTree ('Succ h) f ctx
u
bin_drop (PlusOne Int
s BinomialTree ('Succ h) f x
t BalancedTree h f y
u) =
let m :: BinomialTree h f x
m = case BinomialTree ('Succ h) f x
t of
BinomialTree ('Succ h) f x
Empty -> BinomialTree h f x
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
BinomialTree ('Succ h) f x
_ -> Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s BinomialTree ('Succ h) f x
t
in BinomialTree h f x -> BalancedTree h f y -> DropResult f (x <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x -> BalancedTree h f y -> DropResult f (x <+> y)
bal_drop BinomialTree h f x
m BalancedTree h f y
u
unsafe_bin_index :: BinomialTree h f a
-> Int
-> Int
-> f u
unsafe_bin_index :: BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree h f a
_ Int
_ Int
i
| Int -> Bool -> Bool
seq Int
i Bool
False = String -> f u
forall a. (?callStack::CallStack) => String -> a
error String
"bad unsafe_bin_index"
unsafe_bin_index BinomialTree h f a
Empty Int
_ Int
_ = String -> f u
forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_index reached end of list"
unsafe_bin_index (PlusOne Int
sz BinomialTree ('Succ h) f x
t BalancedTree h f y
u) Int
j Int
i
| Int
sz Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` (Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
i) = BalancedTree h f y -> Int -> Int -> f u
forall k (h :: Height) (f :: k -> *) (a :: Ctx k) (tp :: k).
BalancedTree h f a -> Int -> Int -> f tp
unsafe_bal_index BalancedTree h f y
u Int
j Int
i
| Bool
otherwise = BinomialTree ('Succ h) f x -> Int -> Int -> f u
forall k (h :: Height) (f :: k -> *) (a :: Ctx k) (u :: k).
BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree ('Succ h) f x
t Int
j (Int -> f u) -> Int -> f u
forall a b. (a -> b) -> a -> b
$! (Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
i)
unsafe_bin_index (PlusZero Int
sz BinomialTree ('Succ h) f a
t) Int
j Int
i
| Int
sz Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` (Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
i) = String -> f u
forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_index stopped at PlusZero"
| Bool
otherwise = BinomialTree ('Succ h) f a -> Int -> Int -> f u
forall k (h :: Height) (f :: k -> *) (a :: Ctx k) (u :: k).
BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree ('Succ h) f a
t Int
j (Int -> f u) -> Int -> f u
forall a b. (a -> b) -> a -> b
$! (Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
i)
unsafe_bin_adjust :: forall m h f x y a b
. Functor m
=> (f x -> m (f y))
-> BinomialTree h f a
-> Int
-> Int
-> m (BinomialTree h f b)
unsafe_bin_adjust :: (f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f x -> m (f y)
_ BinomialTree h f a
Empty Int
_ Int
_ = String -> m (BinomialTree h f b)
forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_adjust reached end of list"
unsafe_bin_adjust f x -> m (f y)
f (PlusOne Int
sz BinomialTree ('Succ h) f x
t BalancedTree h f y
u) Int
j Int
i
| Int
sz Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` (Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
i) =
BinomialTree h f (x <+> Any) -> BinomialTree h f b
forall a b. a -> b
unsafeCoerce (BinomialTree h f (x <+> Any) -> BinomialTree h f b)
-> (BalancedTree h f Any -> BinomialTree h f (x <+> Any))
-> BalancedTree h f Any
-> BinomialTree h f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f Any
-> BinomialTree h f (x <+> Any)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
sz BinomialTree ('Succ h) f x
t (BalancedTree h f Any -> BinomialTree h f b)
-> m (BalancedTree h f Any) -> m (BinomialTree h f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((f x -> m (f y))
-> BalancedTree h f y -> Int -> Int -> m (BalancedTree h f Any)
forall k (m :: * -> *) (f :: k -> *) (x :: k) (y :: k)
(h :: Height) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BalancedTree h f a -> Int -> Int -> m (BalancedTree h f b)
unsafe_bal_adjust f x -> m (f y)
f BalancedTree h f y
u Int
j Int
i)
| Bool
otherwise =
BinomialTree h f (Any <+> y) -> BinomialTree h f b
forall a b. a -> b
unsafeCoerce (BinomialTree h f (Any <+> y) -> BinomialTree h f b)
-> (BinomialTree ('Succ h) f Any -> BinomialTree h f (Any <+> y))
-> BinomialTree ('Succ h) f Any
-> BinomialTree h f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (BinomialTree ('Succ h) f Any
-> BalancedTree h f y -> BinomialTree h f (Any <+> y))
-> BalancedTree h f y
-> BinomialTree ('Succ h) f Any
-> BinomialTree h f (Any <+> y)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int
-> BinomialTree ('Succ h) f Any
-> BalancedTree h f y
-> BinomialTree h f (Any <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
sz) BalancedTree h f y
u (BinomialTree ('Succ h) f Any -> BinomialTree h f b)
-> m (BinomialTree ('Succ h) f Any) -> m (BinomialTree h f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((f x -> m (f y))
-> BinomialTree ('Succ h) f x
-> Int
-> Int
-> m (BinomialTree ('Succ h) f Any)
forall k (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f x -> m (f y)
f BinomialTree ('Succ h) f x
t Int
j (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1))
unsafe_bin_adjust f x -> m (f y)
f (PlusZero Int
sz BinomialTree ('Succ h) f a
t) Int
j Int
i
| Int
sz Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` (Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
i) = String -> m (BinomialTree h f b)
forall a. (?callStack::CallStack) => String -> a
error String
"unsafe_bin_adjust stopped at PlusZero"
| Bool
otherwise = Int -> BinomialTree ('Succ h) f b -> BinomialTree h f b
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
sz (BinomialTree ('Succ h) f b -> BinomialTree h f b)
-> m (BinomialTree ('Succ h) f b) -> m (BinomialTree h f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((f x -> m (f y))
-> BinomialTree ('Succ h) f a
-> Int
-> Int
-> m (BinomialTree ('Succ h) f b)
forall k (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f x -> m (f y)
f BinomialTree ('Succ h) f a
t Int
j (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1))
{-# SPECIALIZE unsafe_bin_adjust
:: (f x -> Identity (f y))
-> BinomialTree h f a
-> Int
-> Int
-> Identity (BinomialTree h f b)
#-}
tree_zipWithM :: Applicative m
=> (forall x . f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM :: (forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
_ BinomialTree u f a
Empty BinomialTree u g a
Empty = BinomialTree u h EmptyCtx -> m (BinomialTree u h EmptyCtx)
forall (f :: * -> *) a. Applicative f => a -> f a
pure BinomialTree u h EmptyCtx
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (PlusOne Int
s BinomialTree ('Succ u) f x
x1 BalancedTree u f y
x2) (PlusOne Int
_ BinomialTree ('Succ u) g x
y1 BalancedTree u g y
y2) =
Int
-> BinomialTree ('Succ u) h x
-> BalancedTree u h y
-> BinomialTree u h (x <+> y)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
Int
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> BinomialTree h f (x <+> y)
PlusOne Int
s (BinomialTree ('Succ u) h x
-> BalancedTree u h y -> BinomialTree u h a)
-> m (BinomialTree ('Succ u) h x)
-> m (BalancedTree u h y -> BinomialTree u h a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree ('Succ u) f x
-> BinomialTree ('Succ u) g x
-> m (BinomialTree ('Succ u) h x)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BinomialTree ('Succ u) f x
x1 (BinomialTree ('Succ u) g x -> BinomialTree ('Succ u) g x
forall a b. a -> b
unsafeCoerce BinomialTree ('Succ u) g x
y1)
m (BalancedTree u h y -> BinomialTree u h a)
-> m (BalancedTree u h y) -> m (BinomialTree u h a)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f y
-> BalancedTree u g y
-> m (BalancedTree u h y)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BalancedTree u f a
-> BalancedTree u g a
-> m (BalancedTree u h a)
bal_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BalancedTree u f y
x2 (BalancedTree u g y -> BalancedTree u g y
forall a b. a -> b
unsafeCoerce BalancedTree u g y
y2)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f (PlusZero Int
s BinomialTree ('Succ u) f a
x1) (PlusZero Int
_ BinomialTree ('Succ u) g a
y1) =
Int -> BinomialTree ('Succ u) h a -> BinomialTree u h a
forall k (h :: Height) (f :: k -> *) (x :: Ctx k).
Int -> BinomialTree ('Succ h) f x -> BinomialTree h f x
PlusZero Int
s (BinomialTree ('Succ u) h a -> BinomialTree u h a)
-> m (BinomialTree ('Succ u) h a) -> m (BinomialTree u h a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree ('Succ u) f a
-> BinomialTree ('Succ u) g a
-> m (BinomialTree ('Succ u) h a)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BinomialTree ('Succ u) f a
x1 BinomialTree ('Succ u) g a
y1
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
_ BinomialTree u f a
_ BinomialTree u g a
_ = String -> m (BinomialTree u h a)
forall a. (?callStack::CallStack) => String -> a
error String
"ilegal args to tree_zipWithM"
{-# INLINABLE tree_zipWithM #-}
newtype Assignment (f :: k -> Type) (ctx :: Ctx k)
= Assignment (BinomialTree 'Zero f ctx)
type role Assignment nominal nominal
instance NFData (Assignment f ctx) where
rnf :: Assignment f ctx -> ()
rnf Assignment f ctx
a = Assignment f ctx -> () -> ()
seq Assignment f ctx
a ()
size :: Assignment f ctx -> Size ctx
size :: Assignment f ctx -> Size ctx
size (Assignment BinomialTree 'Zero f ctx
t) = Int -> Size ctx
forall k (ctx :: Ctx k). Int -> Size ctx
Size (BinomialTree 'Zero f ctx -> Int
forall k (h :: Height) (f :: k -> *) (a :: Ctx k).
BinomialTree h f a -> Int
tsize BinomialTree 'Zero f ctx
t)
replicate :: Size ctx -> (forall tp . f tp) -> Assignment f ctx
replicate :: Size ctx -> (forall (tp :: k). f tp) -> Assignment f ctx
replicate Size ctx
n forall (tp :: k). f tp
c = Size ctx
-> (forall (tp :: k). Index ctx tp -> f tp) -> Assignment f ctx
forall k (ctx :: Ctx k) (f :: k -> *).
Size ctx
-> (forall (tp :: k). Index ctx tp -> f tp) -> Assignment f ctx
generate Size ctx
n (\Index ctx tp
_ -> f tp
forall (tp :: k). f tp
c)
generate :: Size ctx
-> (forall tp . Index ctx tp -> f tp)
-> Assignment f ctx
generate :: Size ctx
-> (forall (tp :: k). Index ctx tp -> f tp) -> Assignment f ctx
generate Size ctx
n forall (tp :: k). Index ctx tp -> f tp
f = BinomialTree 'Zero f ctx -> Assignment f ctx
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment BinomialTree 'Zero f ctx
r
where r :: BinomialTree 'Zero f ctx
r = Int
-> Int
-> (forall (tp :: k). Index ctx tp -> f tp)
-> BinomialTree 'Zero f ctx
forall k (h :: Height) (f :: k -> *) (ctx :: Ctx k) (t :: Ctx k).
Int
-> Int
-> (forall (x :: k). Index ctx x -> f x)
-> BinomialTree h f t
unsafe_bin_generate (Size ctx -> Int
forall k (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n) Int
0 forall (tp :: k). Index ctx tp -> f tp
f
{-# NOINLINE generate #-}
generateM :: Applicative m
=> Size ctx
-> (forall tp . Index ctx tp -> m (f tp))
-> m (Assignment f ctx)
generateM :: Size ctx
-> (forall (tp :: k). Index ctx tp -> m (f tp))
-> m (Assignment f ctx)
generateM Size ctx
n forall (tp :: k). Index ctx tp -> m (f tp)
f = BinomialTree 'Zero f ctx -> Assignment f ctx
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (BinomialTree 'Zero f ctx -> Assignment f ctx)
-> m (BinomialTree 'Zero f ctx) -> m (Assignment f ctx)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int
-> Int
-> (forall (tp :: k). Index ctx tp -> m (f tp))
-> m (BinomialTree 'Zero f ctx)
forall k (m :: * -> *) (h :: Height) (f :: k -> *) (ctx :: Ctx k)
(t :: Ctx k).
Applicative m =>
Int
-> Int
-> (forall (x :: k). Index ctx x -> m (f x))
-> m (BinomialTree h f t)
unsafe_bin_generateM (Size ctx -> Int
forall k (ctx :: Ctx k). Size ctx -> Int
sizeInt Size ctx
n) Int
0 forall (tp :: k). Index ctx tp -> m (f tp)
f
{-# NOINLINE generateM #-}
empty :: Assignment f EmptyCtx
empty :: Assignment f EmptyCtx
empty = BinomialTree 'Zero f EmptyCtx -> Assignment f EmptyCtx
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment BinomialTree 'Zero f EmptyCtx
forall k (h :: Height) (f :: k -> *). BinomialTree h f EmptyCtx
Empty
extend :: Assignment f ctx -> f x -> Assignment f (ctx ::> x)
extend :: Assignment f ctx -> f x -> Assignment f (ctx ::> x)
extend (Assignment BinomialTree 'Zero f ctx
x) f x
y = BinomialTree 'Zero f (ctx ::> x) -> Assignment f (ctx ::> x)
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (BinomialTree 'Zero f (ctx ::> x) -> Assignment f (ctx ::> x))
-> BinomialTree 'Zero f (ctx ::> x) -> Assignment f (ctx ::> x)
forall a b. (a -> b) -> a -> b
$ BinomialTree 'Zero f ctx
-> BalancedTree 'Zero f (SingleCtx x)
-> BinomialTree 'Zero f (ctx <+> SingleCtx x)
forall k (h :: Height) (f :: k -> *) (x :: Ctx k) (y :: Ctx k).
BinomialTree h f x
-> BalancedTree h f y -> BinomialTree h f (x <+> y)
append BinomialTree 'Zero f ctx
x (f x -> BalancedTree 'Zero f (SingleCtx x)
forall k (f :: k -> *) (x :: k).
f x -> BalancedTree 'Zero f (SingleCtx x)
BalLeaf f x
y)
unsafeIndex :: proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex :: proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex proxy u
_ Int
idx (Assignment BinomialTree 'Zero f ctx
t) = BinomialTree 'Zero f ctx -> f u -> f u
seq BinomialTree 'Zero f ctx
t (f u -> f u) -> f u -> f u
forall a b. (a -> b) -> a -> b
$ BinomialTree 'Zero f ctx -> Int -> Int -> f u
forall k (h :: Height) (f :: k -> *) (a :: Ctx k) (u :: k).
BinomialTree h f a -> Int -> Int -> f u
unsafe_bin_index BinomialTree 'Zero f ctx
t Int
idx Int
0
(!) :: Assignment f ctx -> Index ctx tp -> f tp
Assignment f ctx
a ! :: Assignment f ctx -> Index ctx tp -> f tp
! Index Int
i = Bool -> f tp -> f tp
forall a. (?callStack::CallStack) => Bool -> a -> a
assert (Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i Bool -> Bool -> Bool
&& Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Size ctx -> Int
forall k (ctx :: Ctx k). Size ctx -> Int
sizeInt (Assignment f ctx -> Size ctx
forall k (f :: k -> *) (ctx :: Ctx k). Assignment f ctx -> Size ctx
size Assignment f ctx
a)) (f tp -> f tp) -> f tp -> f tp
forall a b. (a -> b) -> a -> b
$
Proxy tp -> Int -> Assignment f ctx -> f tp
forall k (proxy :: k -> *) (u :: k) (f :: k -> *) (ctx :: Ctx k).
proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex Proxy tp
forall k (t :: k). Proxy t
Proxy Int
i Assignment f ctx
a
(!^) :: KnownDiff l r => Assignment f r -> Index l tp -> f tp
Assignment f r
a !^ :: Assignment f r -> Index l tp -> f tp
!^ Index l tp
i = Assignment f r
a Assignment f r -> Index r tp -> f tp
forall k (f :: k -> *) (ctx :: Ctx k) (tp :: k).
Assignment f ctx -> Index ctx tp -> f tp
! Index l tp -> Index r tp
forall k (l :: Ctx k) (r :: Ctx k) (tp :: k).
KnownDiff l r =>
Index l tp -> Index r tp
extendIndex Index l tp
i
instance TestEqualityFC Assignment where
testEqualityFC :: (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: Ctx k) (y :: Ctx k).
Assignment f x -> Assignment f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test (Assignment BinomialTree 'Zero f x
x) (Assignment BinomialTree 'Zero f y
y) = do
x :~: y
Refl <- (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> BinomialTree 'Zero f x
-> BinomialTree 'Zero f y
-> Maybe (x :~: y)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
test BinomialTree 'Zero f x
x BinomialTree 'Zero f y
y
(x :~: x) -> Maybe (x :~: x)
forall (m :: * -> *) a. Monad m => a -> m a
return x :~: x
forall k (a :: k). a :~: a
Refl
instance TestEquality f => TestEquality (Assignment f) where
testEquality :: Assignment f a -> Assignment f b -> Maybe (a :~: b)
testEquality = (forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (a :: Ctx k) (b :: Ctx k).
Assignment f a -> Assignment f b -> Maybe (a :~: b)
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
TestEqualityFC t =>
(forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y))
-> forall (x :: l) (y :: l). t f x -> t f y -> Maybe (x :~: y)
testEqualityFC forall (x :: k) (y :: k). f x -> f y -> Maybe (x :~: y)
forall k (f :: k -> *) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality
instance TestEquality f => Eq (Assignment f ctx) where
Assignment f ctx
x == :: Assignment f ctx -> Assignment f ctx -> Bool
== Assignment f ctx
y = Maybe (ctx :~: ctx) -> Bool
forall a. Maybe a -> Bool
isJust (Assignment f ctx -> Assignment f ctx -> Maybe (ctx :~: ctx)
forall k (f :: k -> *) (a :: k) (b :: k).
TestEquality f =>
f a -> f b -> Maybe (a :~: b)
testEquality Assignment f ctx
x Assignment f ctx
y)
instance OrdFC Assignment where
compareFC :: (forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: Ctx k) (y :: Ctx k).
Assignment f x -> Assignment f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test (Assignment BinomialTree 'Zero f x
x) (Assignment BinomialTree 'Zero f y
y) =
OrderingF x y -> ((x ~ y) => OrderingF x y) -> OrderingF x y
forall j k (a :: j) (b :: j) (c :: k) (d :: k).
OrderingF a b -> ((a ~ b) => OrderingF c d) -> OrderingF c d
joinOrderingF ((forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> BinomialTree 'Zero f x
-> BinomialTree 'Zero f y
-> OrderingF x y
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
test BinomialTree 'Zero f x
x BinomialTree 'Zero f y
y) (((x ~ y) => OrderingF x y) -> OrderingF x y)
-> ((x ~ y) => OrderingF x y) -> OrderingF x y
forall a b. (a -> b) -> a -> b
$ (x ~ y) => OrderingF x y
forall k (x :: k). OrderingF x x
EQF
instance OrdF f => OrdF (Assignment f) where
compareF :: Assignment f x -> Assignment f y -> OrderingF x y
compareF = (forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: Ctx k) (y :: Ctx k).
Assignment f x -> Assignment f y -> OrderingF x y
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *).
OrdFC t =>
(forall (x :: k) (y :: k). f x -> f y -> OrderingF x y)
-> forall (x :: l) (y :: l). t f x -> t f y -> OrderingF x y
compareFC forall (x :: k) (y :: k). f x -> f y -> OrderingF x y
forall k (ktp :: k -> *) (x :: k) (y :: k).
OrdF ktp =>
ktp x -> ktp y -> OrderingF x y
compareF
instance OrdF f => Ord (Assignment f ctx) where
compare :: Assignment f ctx -> Assignment f ctx -> Ordering
compare Assignment f ctx
x Assignment f ctx
y = OrderingF ctx ctx -> Ordering
forall k (x :: k) (y :: k). OrderingF x y -> Ordering
toOrdering (Assignment f ctx -> Assignment f ctx -> OrderingF ctx ctx
forall k (ktp :: k -> *) (x :: k) (y :: k).
OrdF ktp =>
ktp x -> ktp y -> OrderingF x y
compareF Assignment f ctx
x Assignment f ctx
y)
instance HashableF (Index ctx) where
hashWithSaltF :: Int -> Index ctx tp -> Int
hashWithSaltF Int
s Index ctx tp
i = Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
hashWithSalt Int
s (Index ctx tp -> Int
forall k (ctx :: Ctx k) (tp :: k). Index ctx tp -> Int
indexVal Index ctx tp
i)
instance Hashable (Index ctx tp) where
hashWithSalt :: Int -> Index ctx tp -> Int
hashWithSalt = Int -> Index ctx tp -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
hashWithSaltF
instance HashableF f => Hashable (Assignment f ctx) where
hashWithSalt :: Int -> Assignment f ctx -> Int
hashWithSalt Int
s (Assignment BinomialTree 'Zero f ctx
a) = Int -> BinomialTree 'Zero f ctx -> Int
forall k (f :: k -> *) (tp :: k). HashableF f => Int -> f tp -> Int
hashWithSaltF Int
s BinomialTree 'Zero f ctx
a
instance HashableF f => HashableF (Assignment f) where
hashWithSaltF :: Int -> Assignment f tp -> Int
hashWithSaltF = Int -> Assignment f tp -> Int
forall a. Hashable a => Int -> a -> Int
hashWithSalt
instance ShowF f => Show (Assignment f ctx) where
show :: Assignment f ctx -> String
show Assignment f ctx
a = String
"[" String -> ShowS
forall a. [a] -> [a] -> [a]
Prelude.++ String -> [String] -> String
forall a. [a] -> [[a]] -> [a]
intercalate String
", " ((forall (x :: k). f x -> String) -> Assignment f ctx -> [String]
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *) a.
FoldableFC t =>
(forall (x :: k). f x -> a) -> forall (x :: l). t f x -> [a]
toListFC forall (x :: k). f x -> String
forall k (f :: k -> *) (tp :: k). ShowF f => f tp -> String
showF Assignment f ctx
a) String -> ShowS
forall a. [a] -> [a] -> [a]
Prelude.++ String
"]"
instance ShowF f => ShowF (Assignment f)
{-# DEPRECATED adjust "Replace 'adjust f i asgn' with 'Lens.over (ixF i) f asgn' instead." #-}
adjust :: (f tp -> f tp) -> Index ctx tp -> Assignment f ctx -> Assignment f ctx
adjust :: (f tp -> f tp)
-> Index ctx tp -> Assignment f ctx -> Assignment f ctx
adjust f tp -> f tp
f Index ctx tp
idx Assignment f ctx
asgn = Identity (Assignment f ctx) -> Assignment f ctx
forall a. Identity a -> a
runIdentity ((f tp -> Identity (f tp))
-> Index ctx tp -> Assignment f ctx -> Identity (Assignment f ctx)
forall k (m :: * -> *) (f :: k -> *) (tp :: k) (ctx :: Ctx k).
Functor m =>
(f tp -> m (f tp))
-> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM (f tp -> Identity (f tp)
forall a. a -> Identity a
Identity (f tp -> Identity (f tp))
-> (f tp -> f tp) -> f tp -> Identity (f tp)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f tp -> f tp
f) Index ctx tp
idx Assignment f ctx
asgn)
{-# DEPRECATED update "Replace 'update idx val asgn' with 'Lens.set (ixF idx) val asgn' instead." #-}
update :: Index ctx tp -> f tp -> Assignment f ctx -> Assignment f ctx
update :: Index ctx tp -> f tp -> Assignment f ctx -> Assignment f ctx
update Index ctx tp
i f tp
v Assignment f ctx
a = (f tp -> f tp)
-> Index ctx tp -> Assignment f ctx -> Assignment f ctx
forall k (f :: k -> *) (tp :: k) (ctx :: Ctx k).
(f tp -> f tp)
-> Index ctx tp -> Assignment f ctx -> Assignment f ctx
adjust (\f tp
_ -> f tp
v) Index ctx tp
i Assignment f ctx
a
adjustM :: Functor m => (f tp -> m (f tp)) -> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM :: (f tp -> m (f tp))
-> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM f tp -> m (f tp)
f (Index Int
i) (Assignment BinomialTree 'Zero f ctx
a) = BinomialTree 'Zero f ctx -> Assignment f ctx
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (BinomialTree 'Zero f ctx -> Assignment f ctx)
-> m (BinomialTree 'Zero f ctx) -> m (Assignment f ctx)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((f tp -> m (f tp))
-> BinomialTree 'Zero f ctx
-> Int
-> Int
-> m (BinomialTree 'Zero f ctx)
forall k (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust f tp -> m (f tp)
f BinomialTree 'Zero f ctx
a Int
i Int
0)
{-# SPECIALIZE adjustM :: (f tp -> Identity (f tp)) -> Index ctx tp -> Assignment f ctx -> Identity (Assignment f ctx) #-}
type instance IndexF (Assignment f ctx) = Index ctx
type instance IxValueF (Assignment f ctx) = f
instance forall k (f :: k -> Type) ctx. IxedF' k (Assignment (f :: k -> Type) ctx) where
ixF' :: Index ctx x -> Lens.Lens' (Assignment f ctx) (f x)
ixF' :: Index ctx x -> Lens' (Assignment f ctx) (f x)
ixF' Index ctx x
idx f x -> f (f x)
f = (f x -> f (f x))
-> Index ctx x -> Assignment f ctx -> f (Assignment f ctx)
forall k (m :: * -> *) (f :: k -> *) (tp :: k) (ctx :: Ctx k).
Functor m =>
(f tp -> m (f tp))
-> Index ctx tp -> Assignment f ctx -> m (Assignment f ctx)
adjustM f x -> f (f x)
f Index ctx x
idx
instance forall k (f :: k -> Type) ctx. IxedF k (Assignment f ctx) where
ixF :: IndexF (Assignment f ctx) x
-> Traversal' (Assignment f ctx) (IxValueF (Assignment f ctx) x)
ixF IndexF (Assignment f ctx) x
idx = IndexF (Assignment f ctx) x
-> Lens' (Assignment f ctx) (IxValueF (Assignment f ctx) x)
forall k m (x :: k).
IxedF' k m =>
IndexF m x -> Lens' m (IxValueF m x)
ixF' IndexF (Assignment f ctx) x
idx
unsafeUpdate :: Int -> Assignment f ctx -> f u -> Assignment f ctx'
unsafeUpdate :: Int -> Assignment f ctx -> f u -> Assignment f ctx'
unsafeUpdate Int
i (Assignment BinomialTree 'Zero f ctx
a) f u
e = BinomialTree 'Zero f ctx' -> Assignment f ctx'
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (Identity (BinomialTree 'Zero f ctx') -> BinomialTree 'Zero f ctx'
forall a. Identity a -> a
runIdentity ((f Any -> Identity (f u))
-> BinomialTree 'Zero f ctx
-> Int
-> Int
-> Identity (BinomialTree 'Zero f ctx')
forall k (m :: * -> *) (h :: Height) (f :: k -> *) (x :: k)
(y :: k) (a :: Ctx k) (b :: Ctx k).
Functor m =>
(f x -> m (f y))
-> BinomialTree h f a -> Int -> Int -> m (BinomialTree h f b)
unsafe_bin_adjust (\f Any
_ -> f u -> Identity (f u)
forall a. a -> Identity a
Identity f u
e) BinomialTree 'Zero f ctx
a Int
i Int
0))
data AssignView f ctx where
AssignEmpty :: AssignView f EmptyCtx
AssignExtend :: Assignment f ctx
-> f tp
-> AssignView f (ctx::>tp)
viewAssign :: forall f ctx . Assignment f ctx -> AssignView f ctx
viewAssign :: Assignment f ctx -> AssignView f ctx
viewAssign (Assignment BinomialTree 'Zero f ctx
x) =
case BinomialTree 'Zero f ctx -> DropResult f ctx
forall k (h :: Height) (f :: k -> *) (ctx :: Ctx k).
BinomialTree h f ctx -> DropResult f ctx
bin_drop BinomialTree 'Zero f ctx
x of
DropResult f ctx
DropEmpty -> AssignView f ctx
forall k (f :: k -> *). AssignView f EmptyCtx
AssignEmpty
DropExt BinomialTree 'Zero f x
t f y
v -> Assignment f x -> f y -> AssignView f (x ::> y)
forall k (f :: k -> *) (ctx :: Ctx k) (tp :: k).
Assignment f ctx -> f tp -> AssignView f (ctx ::> tp)
AssignExtend (BinomialTree 'Zero f x -> Assignment f x
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment BinomialTree 'Zero f x
t) f y
v
zipWith :: (forall x . f x -> g x -> h x)
-> Assignment f a
-> Assignment g a
-> Assignment h a
zipWith :: (forall (x :: k). f x -> g x -> h x)
-> Assignment f a -> Assignment g a -> Assignment h a
zipWith forall (x :: k). f x -> g x -> h x
f = \Assignment f a
x Assignment g a
y -> Identity (Assignment h a) -> Assignment h a
forall a. Identity a -> a
runIdentity (Identity (Assignment h a) -> Assignment h a)
-> Identity (Assignment h a) -> Assignment h a
forall a b. (a -> b) -> a -> b
$ (forall (x :: k). f x -> g x -> Identity (h x))
-> Assignment f a -> Assignment g a -> Identity (Assignment h a)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> Assignment f a -> Assignment g a -> m (Assignment h a)
zipWithM (\f x
u g x
v -> h x -> Identity (h x)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (f x -> g x -> h x
forall (x :: k). f x -> g x -> h x
f f x
u g x
v)) Assignment f a
x Assignment g a
y
{-# INLINE zipWith #-}
zipWithM :: Applicative m
=> (forall x . f x -> g x -> m (h x))
-> Assignment f a
-> Assignment g a
-> m (Assignment h a)
zipWithM :: (forall (x :: k). f x -> g x -> m (h x))
-> Assignment f a -> Assignment g a -> m (Assignment h a)
zipWithM forall (x :: k). f x -> g x -> m (h x)
f (Assignment BinomialTree 'Zero f a
x) (Assignment BinomialTree 'Zero g a
y) = BinomialTree 'Zero h a -> Assignment h a
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (BinomialTree 'Zero h a -> Assignment h a)
-> m (BinomialTree 'Zero h a) -> m (Assignment h a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree 'Zero f a
-> BinomialTree 'Zero g a
-> m (BinomialTree 'Zero h a)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: k -> *)
(u :: Height) (a :: Ctx k).
Applicative m =>
(forall (x :: k). f x -> g x -> m (h x))
-> BinomialTree u f a
-> BinomialTree u g a
-> m (BinomialTree u h a)
tree_zipWithM forall (x :: k). f x -> g x -> m (h x)
f BinomialTree 'Zero f a
x BinomialTree 'Zero g a
y
{-# INLINABLE zipWithM #-}
instance FunctorFC Assignment where
fmapFC :: (forall (x :: k). f x -> g x)
-> forall (x :: Ctx k). Assignment f x -> Assignment g x
fmapFC = \forall (x :: k). f x -> g x
f (Assignment BinomialTree 'Zero f x
x) -> BinomialTree 'Zero g x -> Assignment g x
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment ((forall (x :: k). f x -> g x)
-> BinomialTree 'Zero f x -> BinomialTree 'Zero g x
forall k (f :: k -> *) (g :: k -> *) (h :: Height) (c :: Ctx k).
(forall (tp :: k). f tp -> g tp)
-> BinomialTree h f c -> BinomialTree h g c
fmap_bin forall (x :: k). f x -> g x
f BinomialTree 'Zero f x
x)
{-# INLINE fmapFC #-}
instance FoldableFC Assignment where
foldMapFC :: (forall (x :: k). f x -> m)
-> forall (x :: Ctx k). Assignment f x -> m
foldMapFC = (forall (x :: k). f x -> m) -> Assignment f x -> m
forall k l (t :: (k -> *) -> l -> *) m (f :: k -> *).
(TraversableFC t, Monoid m) =>
(forall (x :: k). f x -> m) -> forall (x :: l). t f x -> m
foldMapFCDefault
{-# INLINE foldMapFC #-}
instance TraversableFC Assignment where
traverseFC :: (forall (x :: k). f x -> m (g x))
-> forall (x :: Ctx k). Assignment f x -> m (Assignment g x)
traverseFC = \forall (x :: k). f x -> m (g x)
f (Assignment BinomialTree 'Zero f x
x) -> BinomialTree 'Zero g x -> Assignment g x
forall k (f :: k -> *) (ctx :: Ctx k).
BinomialTree 'Zero f ctx -> Assignment f ctx
Assignment (BinomialTree 'Zero g x -> Assignment g x)
-> m (BinomialTree 'Zero g x) -> m (Assignment g x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (x :: k). f x -> m (g x))
-> BinomialTree 'Zero f x -> m (BinomialTree 'Zero g x)
forall k (m :: * -> *) (f :: k -> *) (g :: k -> *) (h :: Height)
(c :: Ctx k).
Applicative m =>
(forall (tp :: k). f tp -> m (g tp))
-> BinomialTree h f c -> m (BinomialTree h g c)
traverse_bin forall (x :: k). f x -> m (g x)
f BinomialTree 'Zero f x
x
{-# INLINE traverseFC #-}
instance FunctorFCWithIndex Assignment where
imapFC :: (forall (x :: k). IndexF (Assignment f z) x -> f x -> g x)
-> Assignment f z -> Assignment g z
imapFC = (forall (x :: k). IndexF (Assignment f z) x -> f x -> g x)
-> Assignment f z -> Assignment g z
forall k l (t :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *)
(z :: l).
TraversableFCWithIndex t =>
(forall (x :: k). IndexF (t f z) x -> f x -> g x) -> t f z -> t g z
imapFCDefault
instance FoldableFCWithIndex Assignment where
ifoldMapFC :: (forall (x :: k). IndexF (Assignment f z) x -> f x -> m)
-> Assignment f z -> m
ifoldMapFC = (forall (x :: k). IndexF (Assignment f z) x -> f x -> m)
-> Assignment f z -> m
forall k l (t :: (k -> *) -> l -> *) m (z :: l) (f :: k -> *).
(TraversableFCWithIndex t, Monoid m) =>
(forall (x :: k). IndexF (t f z) x -> f x -> m) -> t f z -> m
ifoldMapFCDefault
instance TraversableFCWithIndex Assignment where
itraverseFC :: (forall (x :: k). IndexF (Assignment f z) x -> f x -> m (g x))
-> Assignment f z -> m (Assignment g z)
itraverseFC = (forall (x :: k). IndexF (Assignment f z) x -> f x -> m (g x))
-> Assignment f z -> m (Assignment g z)
forall k (m :: * -> *) (ctx :: Ctx k) (f :: k -> *) (g :: k -> *).
Applicative m =>
(forall (tp :: k). Index ctx tp -> f tp -> m (g tp))
-> Assignment f ctx -> m (Assignment g ctx)
traverseWithIndex
traverseWithIndex :: Applicative m
=> (forall tp . Index ctx tp -> f tp -> m (g tp))
-> Assignment f ctx
-> m (Assignment g ctx)
traverseWithIndex :: (forall (tp :: k). Index ctx tp -> f tp -> m (g tp))
-> Assignment f ctx -> m (Assignment g ctx)
traverseWithIndex forall (tp :: k). Index ctx tp -> f tp -> m (g tp)
f Assignment f ctx
a = Size ctx
-> (forall (tp :: k). Index ctx tp -> m (g tp))
-> m (Assignment g ctx)
forall k (m :: * -> *) (ctx :: Ctx k) (f :: k -> *).
Applicative m =>
Size ctx
-> (forall (tp :: k). Index ctx tp -> m (f tp))
-> m (Assignment f ctx)
generateM (Assignment f ctx -> Size ctx
forall k (f :: k -> *) (ctx :: Ctx k). Assignment f ctx -> Size ctx
size Assignment f ctx
a) ((forall (tp :: k). Index ctx tp -> m (g tp))
-> m (Assignment g ctx))
-> (forall (tp :: k). Index ctx tp -> m (g tp))
-> m (Assignment g ctx)
forall a b. (a -> b) -> a -> b
$ \Index ctx tp
i -> Index ctx tp -> f tp -> m (g tp)
forall (tp :: k). Index ctx tp -> f tp -> m (g tp)
f Index ctx tp
i (Assignment f ctx
a Assignment f ctx -> Index ctx tp -> f tp
forall k (f :: k -> *) (ctx :: Ctx k) (tp :: k).
Assignment f ctx -> Index ctx tp -> f tp
! Index ctx tp
i)
appendBal :: Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
appendBal :: Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
appendBal Assignment f x
x (BalLeaf f x
a) = Assignment f x
x Assignment f x -> f x -> Assignment f (x ::> x)
forall k (f :: k -> *) (ctx :: Ctx k) (x :: k).
Assignment f ctx -> f x -> Assignment f (ctx ::> x)
`extend` f x
a
appendBal Assignment f x
x (BalPair BalancedTree h f x
y BalancedTree h f y
z) =
case Assignment f x
-> BalancedTree h f x
-> BalancedTree h f y
-> (x <+> (x <+> y)) :~: ((x <+> x) <+> y)
forall k (p :: Ctx k -> *) (x :: Ctx k) (q :: Ctx k -> *)
(y :: Ctx k) (r :: Ctx k -> *) (z :: Ctx k).
p x -> q y -> r z -> (x <+> (y <+> z)) :~: ((x <+> y) <+> z)
assoc Assignment f x
x BalancedTree h f x
y BalancedTree h f y
z of
(x <+> (x <+> y)) :~: ((x <+> x) <+> y)
Refl -> Assignment f x
x Assignment f x -> BalancedTree h f x -> Assignment f (x <+> x)
forall k (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
`appendBal` BalancedTree h f x
y Assignment f (x <+> x)
-> BalancedTree h f y -> Assignment f ((x <+> x) <+> y)
forall k (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
`appendBal` BalancedTree h f y
z
appendBin :: Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
appendBin :: Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
appendBin Assignment f x
x BinomialTree h f y
Empty = Assignment f x
Assignment f (x <+> y)
x
appendBin Assignment f x
x (PlusOne Int
_ BinomialTree ('Succ h) f x
y BalancedTree h f y
z) =
case Assignment f x
-> BinomialTree ('Succ h) f x
-> BalancedTree h f y
-> (x <+> (x <+> y)) :~: ((x <+> x) <+> y)
forall k (p :: Ctx k -> *) (x :: Ctx k) (q :: Ctx k -> *)
(y :: Ctx k) (r :: Ctx k -> *) (z :: Ctx k).
p x -> q y -> r z -> (x <+> (y <+> z)) :~: ((x <+> y) <+> z)
assoc Assignment f x
x BinomialTree ('Succ h) f x
y BalancedTree h f y
z of
(x <+> (x <+> y)) :~: ((x <+> x) <+> y)
Refl -> Assignment f x
x Assignment f x
-> BinomialTree ('Succ h) f x -> Assignment f (x <+> x)
forall k (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
`appendBin` BinomialTree ('Succ h) f x
y Assignment f (x <+> x)
-> BalancedTree h f y -> Assignment f ((x <+> x) <+> y)
forall k (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BalancedTree h f y -> Assignment f (x <+> y)
`appendBal` BalancedTree h f y
z
appendBin Assignment f x
x (PlusZero Int
_ BinomialTree ('Succ h) f y
y) = Assignment f x
x Assignment f x
-> BinomialTree ('Succ h) f y -> Assignment f (x <+> y)
forall k (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
`appendBin` BinomialTree ('Succ h) f y
y
(<++>) :: Assignment f x -> Assignment f y -> Assignment f (x <+> y)
Assignment f x
x <++> :: Assignment f x -> Assignment f y -> Assignment f (x <+> y)
<++> Assignment BinomialTree 'Zero f y
y = Assignment f x
x Assignment f x -> BinomialTree 'Zero f y -> Assignment f (x <+> y)
forall k (f :: k -> *) (x :: Ctx k) (h :: Height) (y :: Ctx k).
Assignment f x -> BinomialTree h f y -> Assignment f (x <+> y)
`appendBin` BinomialTree 'Zero f y
y
instance (KnownRepr (Assignment f) ctx, KnownRepr f bt)
=> KnownRepr (Assignment f) (ctx ::> bt) where
knownRepr :: Assignment f (ctx ::> bt)
knownRepr = Assignment f ctx
forall k (f :: k -> *) (ctx :: k). KnownRepr f ctx => f ctx
knownRepr Assignment f ctx -> f bt -> Assignment f (ctx ::> bt)
forall k (f :: k -> *) (ctx :: Ctx k) (x :: k).
Assignment f ctx -> f x -> Assignment f (ctx ::> x)
`extend` f bt
forall k (f :: k -> *) (ctx :: k). KnownRepr f ctx => f ctx
knownRepr
instance KnownRepr (Assignment f) EmptyCtx where
knownRepr :: Assignment f EmptyCtx
knownRepr = Assignment f EmptyCtx
forall k (f :: k -> *). Assignment f EmptyCtx
empty
unsafeLens :: Int -> Lens.Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens :: Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
idx =
(Assignment f ctx -> f tp)
-> (Assignment f ctx -> f u -> Assignment f ctx')
-> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
Lens.lens (Proxy tp -> Int -> Assignment f ctx -> f tp
forall k (proxy :: k -> *) (u :: k) (f :: k -> *) (ctx :: Ctx k).
proxy u -> Int -> Assignment f ctx -> f u
unsafeIndex Proxy tp
forall k (t :: k). Proxy t
Proxy Int
idx) (Int -> Assignment f ctx -> f u -> Assignment f ctx'
forall k (f :: k -> *) (ctx :: Ctx k) (u :: k) (ctx' :: Ctx k).
Int -> Assignment f ctx -> f u -> Assignment f ctx'
unsafeUpdate Int
idx)
type Assignment1 f x1 = Assignment f ('EmptyCtx '::> x1)
instance Lens.Field1 (Assignment1 f t) (Assignment1 f u) (f t) (f u) where
_1 :: (f t -> f (f u)) -> Assignment1 f t -> f (Assignment1 f u)
_1 = Int -> Lens (Assignment1 f t) (Assignment1 f u) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
type Assignment2 f x1 x2
= Assignment f ('EmptyCtx '::> x1 '::> x2)
instance Lens.Field1 (Assignment2 f t x2) (Assignment2 f u x2) (f t) (f u) where
_1 :: (f t -> f (f u)) -> Assignment2 f t x2 -> f (Assignment2 f u x2)
_1 = Int -> Lens (Assignment2 f t x2) (Assignment2 f u x2) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment2 f x1 t) (Assignment2 f x1 u) (f t) (f u) where
_2 :: (f t -> f (f u)) -> Assignment2 f x1 t -> f (Assignment2 f x1 u)
_2 = Int -> Lens (Assignment2 f x1 t) (Assignment2 f x1 u) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
type Assignment3 f x1 x2 x3
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3)
instance Lens.Field1 (Assignment3 f t x2 x3)
(Assignment3 f u x2 x3)
(f t)
(f u) where
_1 :: (f t -> f (f u))
-> Assignment3 f t x2 x3 -> f (Assignment3 f u x2 x3)
_1 = Int
-> Lens (Assignment3 f t x2 x3) (Assignment3 f u x2 x3) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment3 f x1 t x3)
(Assignment3 f x1 u x3)
(f t)
(f u) where
_2 :: (f t -> f (f u))
-> Assignment3 f x1 t x3 -> f (Assignment3 f x1 u x3)
_2 = Int
-> Lens (Assignment3 f x1 t x3) (Assignment3 f x1 u x3) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment3 f x1 x2 t)
(Assignment3 f x1 x2 u)
(f t)
(f u) where
_3 :: (f t -> f (f u))
-> Assignment3 f x1 x2 t -> f (Assignment3 f x1 x2 u)
_3 = Int
-> Lens (Assignment3 f x1 x2 t) (Assignment3 f x1 x2 u) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
type Assignment4 f x1 x2 x3 x4
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4)
instance Lens.Field1 (Assignment4 f t x2 x3 x4)
(Assignment4 f u x2 x3 x4)
(f t)
(f u) where
_1 :: (f t -> f (f u))
-> Assignment4 f t x2 x3 x4 -> f (Assignment4 f u x2 x3 x4)
_1 = Int
-> Lens
(Assignment4 f t x2 x3 x4) (Assignment4 f u x2 x3 x4) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment4 f x1 t x3 x4)
(Assignment4 f x1 u x3 x4)
(f t)
(f u) where
_2 :: (f t -> f (f u))
-> Assignment4 f x1 t x3 x4 -> f (Assignment4 f x1 u x3 x4)
_2 = Int
-> Lens
(Assignment4 f x1 t x3 x4) (Assignment4 f x1 u x3 x4) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment4 f x1 x2 t x4)
(Assignment4 f x1 x2 u x4)
(f t)
(f u) where
_3 :: (f t -> f (f u))
-> Assignment4 f x1 x2 t x4 -> f (Assignment4 f x1 x2 u x4)
_3 = Int
-> Lens
(Assignment4 f x1 x2 t x4) (Assignment4 f x1 x2 u x4) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment4 f x1 x2 x3 t)
(Assignment4 f x1 x2 x3 u)
(f t)
(f u) where
_4 :: (f t -> f (f u))
-> Assignment4 f x1 x2 x3 t -> f (Assignment4 f x1 x2 x3 u)
_4 = Int
-> Lens
(Assignment4 f x1 x2 x3 t) (Assignment4 f x1 x2 x3 u) (f t) (f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
type Assignment5 f x1 x2 x3 x4 x5
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5)
instance Lens.Field1 (Assignment5 f t x2 x3 x4 x5)
(Assignment5 f u x2 x3 x4 x5)
(f t)
(f u) where
_1 :: (f t -> f (f u))
-> Assignment5 f t x2 x3 x4 x5 -> f (Assignment5 f u x2 x3 x4 x5)
_1 = Int
-> Lens
(Assignment5 f t x2 x3 x4 x5)
(Assignment5 f u x2 x3 x4 x5)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment5 f x1 t x3 x4 x5)
(Assignment5 f x1 u x3 x4 x5)
(f t)
(f u) where
_2 :: (f t -> f (f u))
-> Assignment5 f x1 t x3 x4 x5 -> f (Assignment5 f x1 u x3 x4 x5)
_2 = Int
-> Lens
(Assignment5 f x1 t x3 x4 x5)
(Assignment5 f x1 u x3 x4 x5)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment5 f x1 x2 t x4 x5)
(Assignment5 f x1 x2 u x4 x5)
(f t)
(f u) where
_3 :: (f t -> f (f u))
-> Assignment5 f x1 x2 t x4 x5 -> f (Assignment5 f x1 x2 u x4 x5)
_3 = Int
-> Lens
(Assignment5 f x1 x2 t x4 x5)
(Assignment5 f x1 x2 u x4 x5)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment5 f x1 x2 x3 t x5)
(Assignment5 f x1 x2 x3 u x5)
(f t)
(f u) where
_4 :: (f t -> f (f u))
-> Assignment5 f x1 x2 x3 t x5 -> f (Assignment5 f x1 x2 x3 u x5)
_4 = Int
-> Lens
(Assignment5 f x1 x2 x3 t x5)
(Assignment5 f x1 x2 x3 u x5)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment5 f x1 x2 x3 x4 t)
(Assignment5 f x1 x2 x3 x4 u)
(f t)
(f u) where
_5 :: (f t -> f (f u))
-> Assignment5 f x1 x2 x3 x4 t -> f (Assignment5 f x1 x2 x3 x4 u)
_5 = Int
-> Lens
(Assignment5 f x1 x2 x3 x4 t)
(Assignment5 f x1 x2 x3 x4 u)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
type Assignment6 f x1 x2 x3 x4 x5 x6
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6)
instance Lens.Field1 (Assignment6 f t x2 x3 x4 x5 x6)
(Assignment6 f u x2 x3 x4 x5 x6)
(f t)
(f u) where
_1 :: (f t -> f (f u))
-> Assignment6 f t x2 x3 x4 x5 x6
-> f (Assignment6 f u x2 x3 x4 x5 x6)
_1 = Int
-> Lens
(Assignment6 f t x2 x3 x4 x5 x6)
(Assignment6 f u x2 x3 x4 x5 x6)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment6 f x1 t x3 x4 x5 x6)
(Assignment6 f x1 u x3 x4 x5 x6)
(f t)
(f u) where
_2 :: (f t -> f (f u))
-> Assignment6 f x1 t x3 x4 x5 x6
-> f (Assignment6 f x1 u x3 x4 x5 x6)
_2 = Int
-> Lens
(Assignment6 f x1 t x3 x4 x5 x6)
(Assignment6 f x1 u x3 x4 x5 x6)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment6 f x1 x2 t x4 x5 x6)
(Assignment6 f x1 x2 u x4 x5 x6)
(f t)
(f u) where
_3 :: (f t -> f (f u))
-> Assignment6 f x1 x2 t x4 x5 x6
-> f (Assignment6 f x1 x2 u x4 x5 x6)
_3 = Int
-> Lens
(Assignment6 f x1 x2 t x4 x5 x6)
(Assignment6 f x1 x2 u x4 x5 x6)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment6 f x1 x2 x3 t x5 x6)
(Assignment6 f x1 x2 x3 u x5 x6)
(f t)
(f u) where
_4 :: (f t -> f (f u))
-> Assignment6 f x1 x2 x3 t x5 x6
-> f (Assignment6 f x1 x2 x3 u x5 x6)
_4 = Int
-> Lens
(Assignment6 f x1 x2 x3 t x5 x6)
(Assignment6 f x1 x2 x3 u x5 x6)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment6 f x1 x2 x3 x4 t x6)
(Assignment6 f x1 x2 x3 x4 u x6)
(f t)
(f u) where
_5 :: (f t -> f (f u))
-> Assignment6 f x1 x2 x3 x4 t x6
-> f (Assignment6 f x1 x2 x3 x4 u x6)
_5 = Int
-> Lens
(Assignment6 f x1 x2 x3 x4 t x6)
(Assignment6 f x1 x2 x3 x4 u x6)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment6 f x1 x2 x3 x4 x5 t)
(Assignment6 f x1 x2 x3 x4 x5 u)
(f t)
(f u) where
_6 :: (f t -> f (f u))
-> Assignment6 f x1 x2 x3 x4 x5 t
-> f (Assignment6 f x1 x2 x3 x4 x5 u)
_6 = Int
-> Lens
(Assignment6 f x1 x2 x3 x4 x5 t)
(Assignment6 f x1 x2 x3 x4 x5 u)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
type Assignment7 f x1 x2 x3 x4 x5 x6 x7
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6 '::> x7)
instance Lens.Field1 (Assignment7 f t x2 x3 x4 x5 x6 x7)
(Assignment7 f u x2 x3 x4 x5 x6 x7)
(f t)
(f u) where
_1 :: (f t -> f (f u))
-> Assignment7 f t x2 x3 x4 x5 x6 x7
-> f (Assignment7 f u x2 x3 x4 x5 x6 x7)
_1 = Int
-> Lens
(Assignment7 f t x2 x3 x4 x5 x6 x7)
(Assignment7 f u x2 x3 x4 x5 x6 x7)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment7 f x1 t x3 x4 x5 x6 x7)
(Assignment7 f x1 u x3 x4 x5 x6 x7)
(f t)
(f u) where
_2 :: (f t -> f (f u))
-> Assignment7 f x1 t x3 x4 x5 x6 x7
-> f (Assignment7 f x1 u x3 x4 x5 x6 x7)
_2 = Int
-> Lens
(Assignment7 f x1 t x3 x4 x5 x6 x7)
(Assignment7 f x1 u x3 x4 x5 x6 x7)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment7 f x1 x2 t x4 x5 x6 x7)
(Assignment7 f x1 x2 u x4 x5 x6 x7)
(f t)
(f u) where
_3 :: (f t -> f (f u))
-> Assignment7 f x1 x2 t x4 x5 x6 x7
-> f (Assignment7 f x1 x2 u x4 x5 x6 x7)
_3 = Int
-> Lens
(Assignment7 f x1 x2 t x4 x5 x6 x7)
(Assignment7 f x1 x2 u x4 x5 x6 x7)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment7 f x1 x2 x3 t x5 x6 x7)
(Assignment7 f x1 x2 x3 u x5 x6 x7)
(f t)
(f u) where
_4 :: (f t -> f (f u))
-> Assignment7 f x1 x2 x3 t x5 x6 x7
-> f (Assignment7 f x1 x2 x3 u x5 x6 x7)
_4 = Int
-> Lens
(Assignment7 f x1 x2 x3 t x5 x6 x7)
(Assignment7 f x1 x2 x3 u x5 x6 x7)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment7 f x1 x2 x3 x4 t x6 x7)
(Assignment7 f x1 x2 x3 x4 u x6 x7)
(f t)
(f u) where
_5 :: (f t -> f (f u))
-> Assignment7 f x1 x2 x3 x4 t x6 x7
-> f (Assignment7 f x1 x2 x3 x4 u x6 x7)
_5 = Int
-> Lens
(Assignment7 f x1 x2 x3 x4 t x6 x7)
(Assignment7 f x1 x2 x3 x4 u x6 x7)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment7 f x1 x2 x3 x4 x5 t x7)
(Assignment7 f x1 x2 x3 x4 x5 u x7)
(f t)
(f u) where
_6 :: (f t -> f (f u))
-> Assignment7 f x1 x2 x3 x4 x5 t x7
-> f (Assignment7 f x1 x2 x3 x4 x5 u x7)
_6 = Int
-> Lens
(Assignment7 f x1 x2 x3 x4 x5 t x7)
(Assignment7 f x1 x2 x3 x4 x5 u x7)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
instance Lens.Field7 (Assignment7 f x1 x2 x3 x4 x5 x6 t)
(Assignment7 f x1 x2 x3 x4 x5 x6 u)
(f t)
(f u) where
_7 :: (f t -> f (f u))
-> Assignment7 f x1 x2 x3 x4 x5 x6 t
-> f (Assignment7 f x1 x2 x3 x4 x5 x6 u)
_7 = Int
-> Lens
(Assignment7 f x1 x2 x3 x4 x5 x6 t)
(Assignment7 f x1 x2 x3 x4 x5 x6 u)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
6
type Assignment8 f x1 x2 x3 x4 x5 x6 x7 x8
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6 '::> x7 '::> x8)
instance Lens.Field1 (Assignment8 f t x2 x3 x4 x5 x6 x7 x8)
(Assignment8 f u x2 x3 x4 x5 x6 x7 x8)
(f t)
(f u) where
_1 :: (f t -> f (f u))
-> Assignment8 f t x2 x3 x4 x5 x6 x7 x8
-> f (Assignment8 f u x2 x3 x4 x5 x6 x7 x8)
_1 = Int
-> Lens
(Assignment8 f t x2 x3 x4 x5 x6 x7 x8)
(Assignment8 f u x2 x3 x4 x5 x6 x7 x8)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment8 f x1 t x3 x4 x5 x6 x7 x8)
(Assignment8 f x1 u x3 x4 x5 x6 x7 x8)
(f t)
(f u) where
_2 :: (f t -> f (f u))
-> Assignment8 f x1 t x3 x4 x5 x6 x7 x8
-> f (Assignment8 f x1 u x3 x4 x5 x6 x7 x8)
_2 = Int
-> Lens
(Assignment8 f x1 t x3 x4 x5 x6 x7 x8)
(Assignment8 f x1 u x3 x4 x5 x6 x7 x8)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment8 f x1 x2 t x4 x5 x6 x7 x8)
(Assignment8 f x1 x2 u x4 x5 x6 x7 x8)
(f t)
(f u) where
_3 :: (f t -> f (f u))
-> Assignment8 f x1 x2 t x4 x5 x6 x7 x8
-> f (Assignment8 f x1 x2 u x4 x5 x6 x7 x8)
_3 = Int
-> Lens
(Assignment8 f x1 x2 t x4 x5 x6 x7 x8)
(Assignment8 f x1 x2 u x4 x5 x6 x7 x8)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment8 f x1 x2 x3 t x5 x6 x7 x8)
(Assignment8 f x1 x2 x3 u x5 x6 x7 x8)
(f t)
(f u) where
_4 :: (f t -> f (f u))
-> Assignment8 f x1 x2 x3 t x5 x6 x7 x8
-> f (Assignment8 f x1 x2 x3 u x5 x6 x7 x8)
_4 = Int
-> Lens
(Assignment8 f x1 x2 x3 t x5 x6 x7 x8)
(Assignment8 f x1 x2 x3 u x5 x6 x7 x8)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment8 f x1 x2 x3 x4 t x6 x7 x8)
(Assignment8 f x1 x2 x3 x4 u x6 x7 x8)
(f t)
(f u) where
_5 :: (f t -> f (f u))
-> Assignment8 f x1 x2 x3 x4 t x6 x7 x8
-> f (Assignment8 f x1 x2 x3 x4 u x6 x7 x8)
_5 = Int
-> Lens
(Assignment8 f x1 x2 x3 x4 t x6 x7 x8)
(Assignment8 f x1 x2 x3 x4 u x6 x7 x8)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment8 f x1 x2 x3 x4 x5 t x7 x8)
(Assignment8 f x1 x2 x3 x4 x5 u x7 x8)
(f t)
(f u) where
_6 :: (f t -> f (f u))
-> Assignment8 f x1 x2 x3 x4 x5 t x7 x8
-> f (Assignment8 f x1 x2 x3 x4 x5 u x7 x8)
_6 = Int
-> Lens
(Assignment8 f x1 x2 x3 x4 x5 t x7 x8)
(Assignment8 f x1 x2 x3 x4 x5 u x7 x8)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
instance Lens.Field7 (Assignment8 f x1 x2 x3 x4 x5 x6 t x8)
(Assignment8 f x1 x2 x3 x4 x5 x6 u x8)
(f t)
(f u) where
_7 :: (f t -> f (f u))
-> Assignment8 f x1 x2 x3 x4 x5 x6 t x8
-> f (Assignment8 f x1 x2 x3 x4 x5 x6 u x8)
_7 = Int
-> Lens
(Assignment8 f x1 x2 x3 x4 x5 x6 t x8)
(Assignment8 f x1 x2 x3 x4 x5 x6 u x8)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
6
instance Lens.Field8 (Assignment8 f x1 x2 x3 x4 x5 x6 x7 t)
(Assignment8 f x1 x2 x3 x4 x5 x6 x7 u)
(f t)
(f u) where
_8 :: (f t -> f (f u))
-> Assignment8 f x1 x2 x3 x4 x5 x6 x7 t
-> f (Assignment8 f x1 x2 x3 x4 x5 x6 x7 u)
_8 = Int
-> Lens
(Assignment8 f x1 x2 x3 x4 x5 x6 x7 t)
(Assignment8 f x1 x2 x3 x4 x5 x6 x7 u)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
7
type Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 x9
= Assignment f ('EmptyCtx '::> x1 '::> x2 '::> x3 '::> x4 '::> x5 '::> x6 '::> x7 '::> x8 '::> x9)
instance Lens.Field1 (Assignment9 f t x2 x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f u x2 x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u) where
_1 :: (f t -> f (f u))
-> Assignment9 f t x2 x3 x4 x5 x6 x7 x8 x9
-> f (Assignment9 f u x2 x3 x4 x5 x6 x7 x8 x9)
_1 = Int
-> Lens
(Assignment9 f t x2 x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f u x2 x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
0
instance Lens.Field2 (Assignment9 f x1 t x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 u x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u) where
_2 :: (f t -> f (f u))
-> Assignment9 f x1 t x3 x4 x5 x6 x7 x8 x9
-> f (Assignment9 f x1 u x3 x4 x5 x6 x7 x8 x9)
_2 = Int
-> Lens
(Assignment9 f x1 t x3 x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 u x3 x4 x5 x6 x7 x8 x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
1
instance Lens.Field3 (Assignment9 f x1 x2 t x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 u x4 x5 x6 x7 x8 x9)
(f t)
(f u) where
_3 :: (f t -> f (f u))
-> Assignment9 f x1 x2 t x4 x5 x6 x7 x8 x9
-> f (Assignment9 f x1 x2 u x4 x5 x6 x7 x8 x9)
_3 = Int
-> Lens
(Assignment9 f x1 x2 t x4 x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 u x4 x5 x6 x7 x8 x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
2
instance Lens.Field4 (Assignment9 f x1 x2 x3 t x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 u x5 x6 x7 x8 x9)
(f t)
(f u) where
_4 :: (f t -> f (f u))
-> Assignment9 f x1 x2 x3 t x5 x6 x7 x8 x9
-> f (Assignment9 f x1 x2 x3 u x5 x6 x7 x8 x9)
_4 = Int
-> Lens
(Assignment9 f x1 x2 x3 t x5 x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 u x5 x6 x7 x8 x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
3
instance Lens.Field5 (Assignment9 f x1 x2 x3 x4 t x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 u x6 x7 x8 x9)
(f t)
(f u) where
_5 :: (f t -> f (f u))
-> Assignment9 f x1 x2 x3 x4 t x6 x7 x8 x9
-> f (Assignment9 f x1 x2 x3 x4 u x6 x7 x8 x9)
_5 = Int
-> Lens
(Assignment9 f x1 x2 x3 x4 t x6 x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 u x6 x7 x8 x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
4
instance Lens.Field6 (Assignment9 f x1 x2 x3 x4 x5 t x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 u x7 x8 x9)
(f t)
(f u) where
_6 :: (f t -> f (f u))
-> Assignment9 f x1 x2 x3 x4 x5 t x7 x8 x9
-> f (Assignment9 f x1 x2 x3 x4 x5 u x7 x8 x9)
_6 = Int
-> Lens
(Assignment9 f x1 x2 x3 x4 x5 t x7 x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 u x7 x8 x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
5
instance Lens.Field7 (Assignment9 f x1 x2 x3 x4 x5 x6 t x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 u x8 x9)
(f t)
(f u) where
_7 :: (f t -> f (f u))
-> Assignment9 f x1 x2 x3 x4 x5 x6 t x8 x9
-> f (Assignment9 f x1 x2 x3 x4 x5 x6 u x8 x9)
_7 = Int
-> Lens
(Assignment9 f x1 x2 x3 x4 x5 x6 t x8 x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 u x8 x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
6
instance Lens.Field8 (Assignment9 f x1 x2 x3 x4 x5 x6 x7 t x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 u x9)
(f t)
(f u) where
_8 :: (f t -> f (f u))
-> Assignment9 f x1 x2 x3 x4 x5 x6 x7 t x9
-> f (Assignment9 f x1 x2 x3 x4 x5 x6 x7 u x9)
_8 = Int
-> Lens
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 t x9)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 u x9)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
7
instance Lens.Field9 (Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 t)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 u)
(f t)
(f u) where
_9 :: (f t -> f (f u))
-> Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 t
-> f (Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 u)
_9 = Int
-> Lens
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 t)
(Assignment9 f x1 x2 x3 x4 x5 x6 x7 x8 u)
(f t)
(f u)
forall k (f :: k -> *) (ctx :: Ctx k) (ctx' :: Ctx k) (tp :: k)
(u :: k).
Int -> Lens (Assignment f ctx) (Assignment f ctx') (f tp) (f u)
unsafeLens Int
8