planet-mitchell-0.1.0: Planet Mitchell

Safe HaskellSafe
LanguageHaskell2010

Contravariant

Contents

Synopsis

Contravariant

class Contravariant (f :: * -> *) where #

The class of contravariant functors.

Whereas in Haskell, one can think of a Functor as containing or producing values, a contravariant functor is a functor that can be thought of as consuming values.

As an example, consider the type of predicate functions a -> Bool. One such predicate might be negative x = x < 0, which classifies integers as to whether they are negative. However, given this predicate, we can re-use it in other situations, providing we have a way to map values to integers. For instance, we can use the negative predicate on a person's bank balance to work out if they are currently overdrawn:

newtype Predicate a = Predicate { getPredicate :: a -> Bool }

instance Contravariant Predicate where
  contramap f (Predicate p) = Predicate (p . f)
                                         |   `- First, map the input...
                                         `----- then apply the predicate.

overdrawn :: Predicate Person
overdrawn = contramap personBankBalance negative

Any instance should be subject to the following laws:

contramap id = id
contramap f . contramap g = contramap (g . f)

Note, that the second law follows from the free theorem of the type of contramap and the first law, so you need only check that the former condition holds.

Minimal complete definition

contramap

Methods

contramap :: (a -> b) -> f b -> f a #

(>$) :: b -> f b -> f a infixl 4 #

Replace all locations in the output with the same value. The default definition is contramap . const, but this may be overridden with a more efficient version.

Instances
Contravariant SettableStateVar 
Instance details

Defined in Data.Functor.Contravariant

Contravariant Predicate

A Predicate is a Contravariant Functor, because contramap can apply its function argument to the input of the predicate.

Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Predicate b -> Predicate a #

(>$) :: b -> Predicate b -> Predicate a #

Contravariant Comparison

A Comparison is a Contravariant Functor, because contramap can apply its function argument to each input of the comparison function.

Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Comparison b -> Comparison a #

(>$) :: b -> Comparison b -> Comparison a #

Contravariant Equivalence

Equivalence relations are Contravariant, because you can apply the contramapped function to each input to the equivalence relation.

Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Equivalence b -> Equivalence a #

(>$) :: b -> Equivalence b -> Equivalence a #

Contravariant (V1 :: * -> *) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> V1 b -> V1 a #

(>$) :: b -> V1 b -> V1 a #

Contravariant (U1 :: * -> *) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> U1 b -> U1 a #

(>$) :: b -> U1 b -> U1 a #

Contravariant (Op a) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a0 -> b) -> Op a b -> Op a a0 #

(>$) :: b -> Op a b -> Op a a0 #

Contravariant (Proxy :: * -> *) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Proxy b -> Proxy a #

(>$) :: b -> Proxy b -> Proxy a #

Contravariant m => Contravariant (MaybeT m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> MaybeT m b -> MaybeT m a #

(>$) :: b -> MaybeT m b -> MaybeT m a #

Contravariant f => Contravariant (Indexing f) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

contramap :: (a -> b) -> Indexing f b -> Indexing f a #

(>$) :: b -> Indexing f b -> Indexing f a #

Contravariant f => Contravariant (Indexing64 f) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

contramap :: (a -> b) -> Indexing64 f b -> Indexing64 f a #

(>$) :: b -> Indexing64 f b -> Indexing64 f a #

Contravariant m => Contravariant (ListT m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> ListT m b -> ListT m a #

(>$) :: b -> ListT m b -> ListT m a #

Contravariant f => Contravariant (Rec1 f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Rec1 f b -> Rec1 f a #

(>$) :: b -> Rec1 f b -> Rec1 f a #

Contravariant (Const a :: * -> *) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a0 -> b) -> Const a b -> Const a a0 #

(>$) :: b -> Const a b -> Const a a0 #

Contravariant f => Contravariant (Alt f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Alt f b -> Alt f a #

(>$) :: b -> Alt f b -> Alt f a #

Contravariant f => Contravariant (IdentityT f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> IdentityT f b -> IdentityT f a #

(>$) :: b -> IdentityT f b -> IdentityT f a #

Contravariant m => Contravariant (ExceptT e m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> ExceptT e m b -> ExceptT e m a #

(>$) :: b -> ExceptT e m b -> ExceptT e m a #

Contravariant m => Contravariant (ErrorT e m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> ErrorT e m b -> ErrorT e m a #

(>$) :: b -> ErrorT e m b -> ErrorT e m a #

Contravariant f => Contravariant (Backwards f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Backwards f b -> Backwards f a #

(>$) :: b -> Backwards f b -> Backwards f a #

Contravariant m => Contravariant (WriterT w m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> WriterT w m b -> WriterT w m a #

(>$) :: b -> WriterT w m b -> WriterT w m a #

Contravariant m => Contravariant (StateT s m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> StateT s m b -> StateT s m a #

(>$) :: b -> StateT s m b -> StateT s m a #

Contravariant m => Contravariant (StateT s m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> StateT s m b -> StateT s m a #

(>$) :: b -> StateT s m b -> StateT s m a #

Contravariant m => Contravariant (WriterT w m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> WriterT w m b -> WriterT w m a #

(>$) :: b -> WriterT w m b -> WriterT w m a #

Contravariant f => Contravariant (Reverse f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Reverse f b -> Reverse f a #

(>$) :: b -> Reverse f b -> Reverse f a #

Contravariant (Constant a :: * -> *) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a0 -> b) -> Constant a b -> Constant a a0 #

(>$) :: b -> Constant a b -> Constant a a0 #

Contravariant (K1 i c :: * -> *) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> K1 i c b -> K1 i c a #

(>$) :: b -> K1 i c b -> K1 i c a #

(Contravariant f, Contravariant g) => Contravariant (f :+: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> (f :+: g) b -> (f :+: g) a #

(>$) :: b -> (f :+: g) b -> (f :+: g) a #

(Contravariant f, Contravariant g) => Contravariant (f :*: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> (f :*: g) b -> (f :*: g) a #

(>$) :: b -> (f :*: g) b -> (f :*: g) a #

(Contravariant f, Contravariant g) => Contravariant (Product f g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Product f g b -> Product f g a #

(>$) :: b -> Product f g b -> Product f g a #

(Contravariant f, Contravariant g) => Contravariant (Sum f g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Sum f g b -> Sum f g a #

(>$) :: b -> Sum f g b -> Sum f g a #

Contravariant m => Contravariant (ReaderT r m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> ReaderT r m b -> ReaderT r m a #

(>$) :: b -> ReaderT r m b -> ReaderT r m a #

Contravariant f => Contravariant (M1 i c f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> M1 i c f b -> M1 i c f a #

(>$) :: b -> M1 i c f b -> M1 i c f a #

(Functor f, Contravariant g) => Contravariant (f :.: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> (f :.: g) b -> (f :.: g) a #

(>$) :: b -> (f :.: g) b -> (f :.: g) a #

(Functor f, Contravariant g) => Contravariant (Compose f g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> Compose f g b -> Compose f g a #

(>$) :: b -> Compose f g b -> Compose f g a #

Contravariant f => Contravariant (TakingWhile p f a b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

contramap :: (a0 -> b0) -> TakingWhile p f a b b0 -> TakingWhile p f a b a0 #

(>$) :: b0 -> TakingWhile p f a b b0 -> TakingWhile p f a b a0 #

(Profunctor p, Contravariant g) => Contravariant (BazaarT p g a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

contramap :: (a0 -> b0) -> BazaarT p g a b b0 -> BazaarT p g a b a0 #

(>$) :: b0 -> BazaarT p g a b b0 -> BazaarT p g a b a0 #

(Profunctor p, Contravariant g) => Contravariant (BazaarT1 p g a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

contramap :: (a0 -> b0) -> BazaarT1 p g a b b0 -> BazaarT1 p g a b a0 #

(>$) :: b0 -> BazaarT1 p g a b b0 -> BazaarT1 p g a b a0 #

(Profunctor p, Contravariant g) => Contravariant (PretextT p g a b) 
Instance details

Defined in Control.Lens.Internal.Context

Methods

contramap :: (a0 -> b0) -> PretextT p g a b b0 -> PretextT p g a b a0 #

(>$) :: b0 -> PretextT p g a b b0 -> PretextT p g a b a0 #

Contravariant m => Contravariant (RWST r w s m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> RWST r w s m b -> RWST r w s m a #

(>$) :: b -> RWST r w s m b -> RWST r w s m a #

Contravariant m => Contravariant (RWST r w s m) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> RWST r w s m b -> RWST r w s m a #

(>$) :: b -> RWST r w s m b -> RWST r w s m a #

phantom :: (Functor f, Contravariant f) => f a -> f b #

If f is both Functor and Contravariant then by the time you factor in the laws of each of those classes, it can't actually use its argument in any meaningful capacity.

This method is surprisingly useful. Where both instances exist and are lawful we have the following laws:

fmap f ≡ phantom
contramap f ≡ phantom

(>$<) :: Contravariant f => (a -> b) -> f b -> f a infixl 4 #

This is an infix alias for contramap

(>$$<) :: Contravariant f => f b -> (a -> b) -> f a infixl 4 #

This is an infix version of contramap with the arguments flipped.

($<) :: Contravariant f => f b -> b -> f a infixl 4 #

This is >$ with its arguments flipped.

Optics

contramapped :: Contravariant f => Setter (f b) (f a) a b #

This Setter can be used to map over all of the inputs to a Contravariant.

contramapover contramapped
>>> getPredicate (over contramapped (*2) (Predicate even)) 5
True
>>> getOp (over contramapped (*5) (Op show)) 100
"500"
>>> Prelude.map ($ 1) $ over (mapped . _Unwrapping' Op . contramapped) (*12) [(*2),(+1),(^3)]
[24,13,1728]