{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
module Plots.Types.Pie
(
PieState
, piePlot
, piePlot'
, onWedges
, wedgeKeys
, Wedge
, mkWedge
, HasWedge (..)
, wedgePlot
) where
import Control.Monad.State.Lazy
import Data.Typeable
import qualified Data.Foldable as F
import qualified Data.List as List
import Diagrams.Coordinates.Isomorphic
import Diagrams.Coordinates.Polar
import Diagrams.Prelude hiding (r2)
import Plots.Style
import Plots.Types
import Plots.Axis
data Wedge n = Wedge
{ forall n. Wedge n -> n
sEndR :: n
, forall n. Wedge n -> n
sStartR :: n
, forall n. Wedge n -> n
sOffset :: n
, forall n. Wedge n -> Direction V2 n
sDir :: Direction V2 n
, forall n. Wedge n -> Angle n
sWidth :: Angle n
} deriving Typeable
type instance V (Wedge n) = V2
type instance N (Wedge n) = n
instance RealFloat n => Enveloped (Wedge n) where
getEnvelope :: Wedge n -> Envelope (V (Wedge n)) (N (Wedge n))
getEnvelope Wedge {n
Angle n
Direction V2 n
sEndR :: forall n. Wedge n -> n
sStartR :: forall n. Wedge n -> n
sOffset :: forall n. Wedge n -> n
sDir :: forall n. Wedge n -> Direction V2 n
sWidth :: forall n. Wedge n -> Angle n
sEndR :: n
sStartR :: n
sOffset :: n
sDir :: Direction V2 n
sWidth :: Angle n
..} = Path V2 n -> Envelope (V (Path V2 n)) (N (Path V2 n))
forall a. Enveloped a => a -> Envelope (V a) (N a)
getEnvelope Path V2 n
shape Envelope V2 n -> (Envelope V2 n -> Envelope V2 n) -> Envelope V2 n
forall a b. a -> (a -> b) -> b
# Vn (Envelope V2 n) -> Envelope V2 n -> Envelope V2 n
forall t. Transformable t => Vn t -> t -> t
translate Vn (Envelope V2 n)
V2 n
off where
shape :: Path V2 n
shape
| n
sStartR n -> n -> Bool
forall a. Eq a => a -> a -> Bool
== n
0 = n -> Direction V2 n -> Angle n -> Path V2 n
forall n t.
(InSpace V2 n t, OrderedField n, TrailLike t) =>
n -> Direction V2 n -> Angle n -> t
wedge n
sEndR Direction V2 n
sDir Angle n
sWidth :: Path V2 n
| Bool
otherwise = n -> n -> Direction V2 n -> Angle n -> Path V2 n
forall t n.
(TrailLike t, V t ~ V2, N t ~ n, RealFloat n) =>
n -> n -> Direction V2 n -> Angle n -> t
annularWedge n
sEndR n
sStartR Direction V2 n
sDir Angle n
sWidth
off :: V2 n
off
| n
sOffset n -> n -> Bool
forall a. Eq a => a -> a -> Bool
== n
0 = V2 n
forall a. Num a => V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero
| Bool
otherwise = n
sOffset n -> V2 n -> V2 n
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ Direction V2 n -> V2 n
forall (v :: * -> *) n.
(Metric v, Floating n) =>
Direction v n -> v n
fromDir (Angle n -> Direction V2 n -> Direction V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate (Angle n
sWidth Angle n -> n -> Angle n
forall (f :: * -> *) a.
(Functor f, Fractional a) =>
f a -> a -> f a
^/ n
2) Direction V2 n
sDir)
instance (TypeableFloat n, Renderable (Path V2 n) b)
=> Plotable (Wedge n) b where
renderPlotable :: forall (v :: * -> *) n.
InSpace v n (Wedge n) =>
AxisSpec v n -> PlotStyle b v n -> Wedge n -> QDiagram b v n Any
renderPlotable AxisSpec v n
s PlotStyle b v n
sty Wedge {n
Angle n
Direction V2 n
sEndR :: forall n. Wedge n -> n
sStartR :: forall n. Wedge n -> n
sOffset :: forall n. Wedge n -> n
sDir :: forall n. Wedge n -> Direction V2 n
sWidth :: forall n. Wedge n -> Angle n
sEndR :: n
sStartR :: n
sOffset :: n
sDir :: Direction V2 n
sWidth :: Angle n
..} =
QDiagram b v n Any
shape
# applyAreaStyle sty
# translate off
# transform (s^.specTrans)
where
shape :: QDiagram b v n Any
shape
| n
sStartR n -> n -> Bool
forall a. Eq a => a -> a -> Bool
== n
0 = n -> Direction V2 n -> Angle n -> QDiagram b v n Any
forall n t.
(InSpace V2 n t, OrderedField n, TrailLike t) =>
n -> Direction V2 n -> Angle n -> t
wedge n
sEndR Direction V2 n
sDir Angle n
sWidth
| Bool
otherwise = n -> n -> Direction V2 n -> Angle n -> QDiagram b v n Any
forall t n.
(TrailLike t, V t ~ V2, N t ~ n, RealFloat n) =>
n -> n -> Direction V2 n -> Angle n -> t
annularWedge n
sEndR n
sStartR Direction V2 n
sDir Angle n
sWidth
off :: V2 n
off
| n
sOffset n -> n -> Bool
forall a. Eq a => a -> a -> Bool
== n
0 = V2 n
forall a. Num a => V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero
| Bool
otherwise = n
sOffset n -> V2 n -> V2 n
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ Direction V2 n -> V2 n
forall (v :: * -> *) n.
(Metric v, Floating n) =>
Direction v n -> v n
fromDir (Angle n -> Direction V2 n -> Direction V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate (Angle n
sWidth Angle n -> n -> Angle n
forall (f :: * -> *) a.
(Functor f, Fractional a) =>
f a -> a -> f a
^/ n
2) Direction V2 n
sDir)
defLegendPic :: forall (v :: * -> *) n.
InSpace v n (Wedge n) =>
PlotStyle b v n -> Wedge n -> QDiagram b v n Any
defLegendPic PlotStyle b v n
sty Wedge {}
= n -> QDiagram b v n Any
forall n t. (InSpace V2 n t, TrailLike t) => n -> t
square n
5 QDiagram b v n Any
-> (QDiagram b v n Any -> QDiagram b v n Any) -> QDiagram b v n Any
forall a b. a -> (a -> b) -> b
# PlotStyle b v n -> QDiagram b v n Any -> QDiagram b v n Any
forall a t b.
(SameSpace a t, HasPlotStyle (Const (PlotStyle b (V a) (N a))) a b,
HasStyle t) =>
a -> t -> t
applyAreaStyle PlotStyle b v n
sty
mkWedge
:: Num n
=> Direction V2 n
-> Angle n
-> Wedge n
mkWedge :: forall n. Num n => Direction V2 n -> Angle n -> Wedge n
mkWedge Direction V2 n
d Angle n
theta = Wedge
{ sEndR :: n
sEndR = n
1
, sStartR :: n
sStartR = n
0
, sOffset :: n
sOffset = n
0
, sDir :: Direction V2 n
sDir = Direction V2 n
d
, sWidth :: Angle n
sWidth = Angle n
theta
}
class HasWedge f a where
pieWedge :: LensLike' f a (Wedge (N a))
wedgeOuterRadius :: Functor f => LensLike' f a (N a)
wedgeOuterRadius = LensLike' f a (Wedge (N a))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge LensLike' f a (Wedge (N a))
-> ((N a -> f (N a)) -> Wedge (N a) -> f (Wedge (N a)))
-> LensLike' f a (N a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge (N a) -> N a)
-> (Wedge (N a) -> N a -> Wedge (N a))
-> Lens (Wedge (N a)) (Wedge (N a)) (N a) (N a)
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens Wedge (N a) -> N a
forall n. Wedge n -> n
sEndR (\Wedge (N a)
p N a
r -> Wedge (N a)
p {sEndR = r})
wedgeInnerRadius :: Functor f => LensLike' f a (N a)
wedgeInnerRadius = LensLike' f a (Wedge (N a))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge LensLike' f a (Wedge (N a))
-> ((N a -> f (N a)) -> Wedge (N a) -> f (Wedge (N a)))
-> LensLike' f a (N a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge (N a) -> N a)
-> (Wedge (N a) -> N a -> Wedge (N a))
-> Lens (Wedge (N a)) (Wedge (N a)) (N a) (N a)
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens Wedge (N a) -> N a
forall n. Wedge n -> n
sStartR (\Wedge (N a)
p N a
r -> Wedge (N a)
p {sStartR = r})
wedgeOffset :: Functor f => LensLike' f a (N a)
wedgeOffset = LensLike' f a (Wedge (N a))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge LensLike' f a (Wedge (N a))
-> ((N a -> f (N a)) -> Wedge (N a) -> f (Wedge (N a)))
-> LensLike' f a (N a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge (N a) -> N a)
-> (Wedge (N a) -> N a -> Wedge (N a))
-> Lens (Wedge (N a)) (Wedge (N a)) (N a) (N a)
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens Wedge (N a) -> N a
forall n. Wedge n -> n
sOffset (\Wedge (N a)
p N a
x -> Wedge (N a)
p {sOffset = x})
wedgeWidth :: Functor f => LensLike' f a (Angle (N a))
wedgeWidth = LensLike' f a (Wedge (N a))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge LensLike' f a (Wedge (N a))
-> ((Angle (N a) -> f (Angle (N a)))
-> Wedge (N a) -> f (Wedge (N a)))
-> LensLike' f a (Angle (N a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge (N a) -> Angle (N a))
-> (Wedge (N a) -> Angle (N a) -> Wedge (N a))
-> Lens (Wedge (N a)) (Wedge (N a)) (Angle (N a)) (Angle (N a))
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens Wedge (N a) -> Angle (N a)
forall n. Wedge n -> Angle n
sWidth (\Wedge (N a)
p Angle (N a)
x -> Wedge (N a)
p {sWidth = x})
wedgeDirection :: Functor f => LensLike' f a (Direction V2 (N a))
wedgeDirection = LensLike' f a (Wedge (N a))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge LensLike' f a (Wedge (N a))
-> ((Direction V2 (N a) -> f (Direction V2 (N a)))
-> Wedge (N a) -> f (Wedge (N a)))
-> LensLike' f a (Direction V2 (N a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge (N a) -> Direction V2 (N a))
-> (Wedge (N a) -> Direction V2 (N a) -> Wedge (N a))
-> Lens
(Wedge (N a))
(Wedge (N a))
(Direction V2 (N a))
(Direction V2 (N a))
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens Wedge (N a) -> Direction V2 (N a)
forall n. Wedge n -> Direction V2 n
sDir (\Wedge (N a)
p Direction V2 (N a)
x -> Wedge (N a)
p {sDir = x})
instance HasWedge f (Wedge n) where
pieWedge :: LensLike' f (Wedge n) (Wedge (N (Wedge n)))
pieWedge = (Wedge n -> f (Wedge n)) -> Wedge n -> f (Wedge n)
LensLike' f (Wedge n) (Wedge (N (Wedge n)))
forall a. a -> a
id
instance (Functor f, HasWedge f a) => HasWedge f (Plot a b) where
pieWedge :: LensLike' f (Plot a b) (Wedge (N (Plot a b)))
pieWedge = (a -> f a) -> Plot a b -> f (Plot a b)
forall p p' b. SameSpace p p' => Lens (Plot p b) (Plot p' b) p p'
Lens (Plot a b) (Plot a b) a a
rawPlot ((a -> f a) -> Plot a b -> f (Plot a b))
-> ((Wedge (N a) -> f (Wedge (N a))) -> a -> f a)
-> (Wedge (N a) -> f (Wedge (N a)))
-> Plot a b
-> f (Plot a b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge (N a) -> f (Wedge (N a))) -> a -> f a
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge
instance Applicative f => HasWedge f (PieState b n a) where
pieWedge :: LensLike' f (PieState b n a) (Wedge (N (PieState b n a)))
pieWedge = ([(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)])
-> PieState b n a -> f (PieState b n a)
forall b n a (f :: * -> *).
Functor f =>
([(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)])
-> PieState b n a -> f (PieState b n a)
stateMods (([(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)])
-> PieState b n a -> f (PieState b n a))
-> ((Wedge n -> f (Wedge n))
-> [(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)])
-> (Wedge n -> f (Wedge n))
-> PieState b n a
-> f (PieState b n a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a, Plot (Wedge n) b) -> f (a, Plot (Wedge n) b))
-> [(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)]
forall (f :: * -> *) a b.
Traversable f =>
IndexedTraversal Int (f a) (f b) a b
IndexedTraversal
Int
[(a, Plot (Wedge n) b)]
[(a, Plot (Wedge n) b)]
(a, Plot (Wedge n) b)
(a, Plot (Wedge n) b)
traversed (((a, Plot (Wedge n) b) -> f (a, Plot (Wedge n) b))
-> [(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)])
-> ((Wedge n -> f (Wedge n))
-> (a, Plot (Wedge n) b) -> f (a, Plot (Wedge n) b))
-> (Wedge n -> f (Wedge n))
-> [(a, Plot (Wedge n) b)]
-> f [(a, Plot (Wedge n) b)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> (a, Plot (Wedge n) b) -> f (a, Plot (Wedge n) b)
forall s t a b. Field2 s t a b => Lens s t a b
Lens
(a, Plot (Wedge n) b)
(a, Plot (Wedge n) b)
(Plot (Wedge n) b)
(Plot (Wedge n) b)
_2 ((Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> (a, Plot (Wedge n) b) -> f (a, Plot (Wedge n) b))
-> ((Wedge n -> f (Wedge n))
-> Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> (Wedge n -> f (Wedge n))
-> (a, Plot (Wedge n) b)
-> f (a, Plot (Wedge n) b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge n -> f (Wedge n))
-> Plot (Wedge n) b -> f (Plot (Wedge n) b)
LensLike' f (Plot (Wedge n) b) (Wedge (N (Plot (Wedge n) b)))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge
instance (Applicative f, Typeable b, v ~ V2, Typeable n)
=> HasWedge f (DynamicPlot b v n) where
pieWedge :: LensLike' f (DynamicPlot b v n) (Wedge (N (DynamicPlot b v n)))
pieWedge = ((Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> DynamicPlot b v n -> f (DynamicPlot b v n)
(Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> DynamicPlot b (V (Wedge n)) (N (Wedge n))
-> f (DynamicPlot b (V (Wedge n)) (N (Wedge n)))
forall p b.
(Typeable p, Typeable b) =>
Traversal' (DynamicPlot b (V p) (N p)) (Plot p b)
forall {f :: * -> *}.
Applicative f =>
(Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> DynamicPlot b v n -> f (DynamicPlot b v n)
Traversal'
(DynamicPlot b (V (Wedge n)) (N (Wedge n))) (Plot (Wedge n) b)
dynamicPlot :: Traversal' (DynamicPlot b v n) (Plot (Wedge n) b))
((Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> DynamicPlot b v n -> f (DynamicPlot b v n))
-> ((Wedge n -> f (Wedge n))
-> Plot (Wedge n) b -> f (Plot (Wedge n) b))
-> (Wedge n -> f (Wedge n))
-> DynamicPlot b v n
-> f (DynamicPlot b v n)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge n -> f (Wedge n))
-> Plot (Wedge n) b -> f (Plot (Wedge n) b)
LensLike' f (Plot (Wedge n) b) (Wedge (N (Plot (Wedge n) b)))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge
instance (v ~ V2, Applicative f, Typeable n)
=> HasWedge f (StyledPlot b v n) where
pieWedge :: LensLike' f (StyledPlot b v n) (Wedge (N (StyledPlot b v n)))
pieWedge = ((Wedge n -> f (Wedge n))
-> StyledPlot b v n -> f (StyledPlot b v n)
(Wedge n -> f (Wedge n))
-> StyledPlot b (V (Wedge n)) (N (Wedge n))
-> f (StyledPlot b (V (Wedge n)) (N (Wedge n)))
forall p b. Typeable p => Traversal' (StyledPlot b (V p) (N p)) p
forall {f :: * -> *}.
Applicative f =>
(Wedge n -> f (Wedge n))
-> StyledPlot b v n -> f (StyledPlot b v n)
Traversal' (StyledPlot b (V (Wedge n)) (N (Wedge n))) (Wedge n)
styledPlot :: Traversal' (StyledPlot b v n) (Wedge n))
instance (BaseSpace c ~ V2, Settable f, Typeable n)
=> HasWedge f (Axis b c n) where
pieWedge :: LensLike' f (Axis b c n) (Wedge (N (Axis b c n)))
pieWedge = (StyledPlot b V2 n -> f (StyledPlot b V2 n))
-> Axis b c n -> f (Axis b c n)
Setter' (Axis b c n) (StyledPlot b V2 n)
forall (c :: * -> *) (v :: * -> *) b n.
(BaseSpace c ~ v) =>
Setter' (Axis b c n) (StyledPlot b v n)
finalPlots ((StyledPlot b V2 n -> f (StyledPlot b V2 n))
-> Axis b c n -> f (Axis b c n))
-> ((Wedge n -> f (Wedge n))
-> StyledPlot b V2 n -> f (StyledPlot b V2 n))
-> (Wedge n -> f (Wedge n))
-> Axis b c n
-> f (Axis b c n)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Wedge n -> f (Wedge n))
-> StyledPlot b V2 n -> f (StyledPlot b V2 n)
LensLike' f (StyledPlot b V2 n) (Wedge (N (StyledPlot b V2 n)))
forall (f :: * -> *) a. HasWedge f a => LensLike' f a (Wedge (N a))
pieWedge
data PieState b n a = PieState
{ forall b n a. PieState b n a -> [(a, Plot (Wedge n) b)]
psMods :: [(a, Plot (Wedge n) b)]
}
type instance V (PieState b n a) = V2
type instance N (PieState b n a) = n
stateMods :: Lens' (PieState b n a) [(a, Plot (Wedge n) b)]
stateMods :: forall b n a (f :: * -> *).
Functor f =>
([(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)])
-> PieState b n a -> f (PieState b n a)
stateMods = (PieState b n a -> [(a, Plot (Wedge n) b)])
-> (PieState b n a -> [(a, Plot (Wedge n) b)] -> PieState b n a)
-> Lens
(PieState b n a)
(PieState b n a)
[(a, Plot (Wedge n) b)]
[(a, Plot (Wedge n) b)]
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens PieState b n a -> [(a, Plot (Wedge n) b)]
forall b n a. PieState b n a -> [(a, Plot (Wedge n) b)]
psMods (\PieState b n a
ps [(a, Plot (Wedge n) b)]
ms -> PieState b n a
ps {psMods = ms})
onWedges :: (a -> State (Plot (Wedge n) b) ()) -> State (PieState b n a) ()
onWedges :: forall a n b.
(a -> State (Plot (Wedge n) b) ()) -> State (PieState b n a) ()
onWedges a -> State (Plot (Wedge n) b) ()
f = ([(a, Plot (Wedge n) b)] -> Identity [(a, Plot (Wedge n) b)])
-> PieState b n a -> Identity (PieState b n a)
forall b n a (f :: * -> *).
Functor f =>
([(a, Plot (Wedge n) b)] -> f [(a, Plot (Wedge n) b)])
-> PieState b n a -> f (PieState b n a)
stateMods (([(a, Plot (Wedge n) b)] -> Identity [(a, Plot (Wedge n) b)])
-> PieState b n a -> Identity (PieState b n a))
-> ([(a, Plot (Wedge n) b)] -> [(a, Plot (Wedge n) b)])
-> StateT (PieState b n a) Identity ()
forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> (a -> b) -> m ()
%= ((a, Plot (Wedge n) b) -> (a, Plot (Wedge n) b))
-> [(a, Plot (Wedge n) b)] -> [(a, Plot (Wedge n) b)]
forall a b. (a -> b) -> [a] -> [b]
map (\(a
a, Plot (Wedge n) b
p) -> (a
a, State (Plot (Wedge n) b) () -> Plot (Wedge n) b -> Plot (Wedge n) b
forall s a. State s a -> s -> s
execState (a -> State (Plot (Wedge n) b) ()
f a
a) Plot (Wedge n) b
p))
wedgeKeys :: Num n => (a -> String) -> State (PieState b n a) ()
wedgeKeys :: forall n a b. Num n => (a -> String) -> State (PieState b n a) ()
wedgeKeys a -> String
f = (a -> State (Plot (Wedge n) b) ()) -> State (PieState b n a) ()
forall a n b.
(a -> State (Plot (Wedge n) b) ()) -> State (PieState b n a) ()
onWedges ((a -> State (Plot (Wedge n) b) ()) -> State (PieState b n a) ())
-> (a -> State (Plot (Wedge n) b) ()) -> State (PieState b n a) ()
forall a b. (a -> b) -> a -> b
$ \a
a -> String -> State (Plot (Wedge n) b) ()
forall a b (m :: * -> *).
(HasPlotOptions Identity a b, MonadState a m, Num (N a)) =>
String -> m ()
key (a -> String
f a
a)
piePlot
:: (MonadState (Axis b Polar n) m,
Plotable (Wedge n) b,
F.Foldable f)
=> f a
-> (a -> n)
-> State (PieState b n a) ()
-> m ()
piePlot :: forall b n (m :: * -> *) (f :: * -> *) a.
(MonadState (Axis b Polar n) m, Plotable (Wedge n) b,
Foldable f) =>
f a -> (a -> n) -> State (PieState b n a) () -> m ()
piePlot (f a -> [a]
forall a. f a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
F.toList -> [a]
as) a -> n
f State (PieState b n a) ()
st = [Plot (Wedge n) b] -> (Plot (Wedge n) b -> m ()) -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
F.forM_ [Plot (Wedge n) b]
ps Plot (Wedge n) b -> m ()
forall (c :: * -> *) n p b (m :: * -> *).
(InSpace (BaseSpace c) n p, MonadState (Axis b c n) m,
Plotable p b) =>
Plot p b -> m ()
addPlot
where
ns :: [n]
ns = (a -> n) -> [a] -> [n]
forall a b. (a -> b) -> [a] -> [b]
map a -> n
f [a]
as
x :: n
x = [n] -> n
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
F.sum [n]
ns
wedges :: [Wedge n]
wedges = (Direction V2 n, [Wedge n]) -> [Wedge n]
forall a b. (a, b) -> b
snd ((Direction V2 n, [Wedge n]) -> [Wedge n])
-> (Direction V2 n, [Wedge n]) -> [Wedge n]
forall a b. (a -> b) -> a -> b
$ (Direction V2 n -> a -> (Direction V2 n, Wedge n))
-> Direction V2 n -> [a] -> (Direction V2 n, [Wedge n])
forall (t :: * -> *) s a b.
Traversable t =>
(s -> a -> (s, b)) -> s -> t a -> (s, t b)
List.mapAccumR Direction V2 n -> a -> (Direction V2 n, Wedge n)
wedgeAccum Direction V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => Direction v n
xDir [a]
as
wedgeAccum :: Direction V2 n -> a -> (Direction V2 n, Wedge n)
wedgeAccum Direction V2 n
d a
a = (Direction V2 n
d', Wedge n
wdg)
where theta :: Angle n
theta = (a -> n
f a
a n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
x) n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn
d' :: Direction V2 n
d' = Direction V2 n
d Direction V2 n
-> (Direction V2 n -> Direction V2 n) -> Direction V2 n
forall a b. a -> (a -> b) -> b
# Angle n -> Direction V2 n -> Direction V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta
wdg :: Wedge n
wdg = Direction V2 n -> Angle n -> Wedge n
forall n. Num n => Direction V2 n -> Angle n -> Wedge n
mkWedge Direction V2 n
d Angle n
theta
ps :: [Plot (Wedge n) b]
ps = ((a, Plot (Wedge n) b) -> Plot (Wedge n) b)
-> [(a, Plot (Wedge n) b)] -> [Plot (Wedge n) b]
forall a b. (a -> b) -> [a] -> [b]
map (a, Plot (Wedge n) b) -> Plot (Wedge n) b
forall a b. (a, b) -> b
snd ([(a, Plot (Wedge n) b)] -> [Plot (Wedge n) b])
-> (PieState b n a -> [(a, Plot (Wedge n) b)])
-> PieState b n a
-> [Plot (Wedge n) b]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PieState b n a -> [(a, Plot (Wedge n) b)]
forall b n a. PieState b n a -> [(a, Plot (Wedge n) b)]
psMods (PieState b n a -> [Plot (Wedge n) b])
-> PieState b n a -> [Plot (Wedge n) b]
forall a b. (a -> b) -> a -> b
$ State (PieState b n a) () -> PieState b n a -> PieState b n a
forall s a. State s a -> s -> s
execState State (PieState b n a) ()
st PieState b n a
ps0
ps0 :: PieState b n a
ps0 = PieState { psMods :: [(a, Plot (Wedge n) b)]
psMods = [a] -> [Plot (Wedge n) b] -> [(a, Plot (Wedge n) b)]
forall a b. [a] -> [b] -> [(a, b)]
zip [a]
as ((Wedge n -> Plot (Wedge n) b) -> [Wedge n] -> [Plot (Wedge n) b]
forall a b. (a -> b) -> [a] -> [b]
map Wedge n -> Plot (Wedge n) b
forall p b. (Additive (V p), Num (N p)) => p -> Plot p b
mkPlot [Wedge n]
wedges) }
piePlot'
:: (MonadState (Axis b Polar n) m,
Plotable (Wedge n) b,
F.Foldable f)
=> f n
-> m ()
piePlot' :: forall b n (m :: * -> *) (f :: * -> *).
(MonadState (Axis b Polar n) m, Plotable (Wedge n) b,
Foldable f) =>
f n -> m ()
piePlot' f n
ns = f n -> (n -> n) -> State (PieState b n n) () -> m ()
forall b n (m :: * -> *) (f :: * -> *) a.
(MonadState (Axis b Polar n) m, Plotable (Wedge n) b,
Foldable f) =>
f a -> (a -> n) -> State (PieState b n a) () -> m ()
piePlot f n
ns n -> n
forall a. a -> a
id (() -> State (PieState b n n) ()
forall a. a -> StateT (PieState b n n) Identity a
forall (m :: * -> *) a. Monad m => a -> m a
return ())
wedgePlot
:: (v ~ BaseSpace c, v ~ V2,
PointLike v n (Polar n),
MonadState (Axis b c n) m,
Plotable (Wedge n) b
)
=> Direction V2 n -> Angle n -> State (Plot (Wedge n) b) () -> m ()
wedgePlot :: forall (v :: * -> *) (c :: * -> *) n b (m :: * -> *).
(v ~ BaseSpace c, v ~ V2, PointLike v n (Polar n),
MonadState (Axis b c n) m, Plotable (Wedge n) b) =>
Direction V2 n -> Angle n -> State (Plot (Wedge n) b) () -> m ()
wedgePlot Direction V2 n
r Angle n
theta = Wedge n -> State (Plot (Wedge n) b) () -> m ()
forall (c :: * -> *) n p b (m :: * -> *).
(InSpace (BaseSpace c) n p, MonadState (Axis b c n) m,
Plotable p b) =>
p -> State (Plot p b) () -> m ()
addPlotable (Direction V2 n -> Angle n -> Wedge n
forall n. Num n => Direction V2 n -> Angle n -> Wedge n
mkWedge Direction V2 n
r Angle n
theta)