{-# LANGUAGE AllowAmbiguousTypes #-}
module Polysemy.Tagged
(
Tagged (..)
, tag
, tagged
, untag
, retag
) where
import Polysemy
import Polysemy.Internal
import Polysemy.Internal.Union
newtype Tagged k e m a where
Tagged :: forall k e m a. e m a -> Tagged k e m a
tag
:: forall k e r a
. Member (Tagged k e) r
=> Sem (e ': r) a
-> Sem r a
tag :: forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member (Tagged k e) r =>
Sem (e : r) a -> Sem r a
tag = (forall x. Union (e : r) (Sem (e : r)) x -> Union r (Sem r) x)
-> Sem (e : r) a -> Sem r a
forall (r :: EffectRow) (r' :: EffectRow) a.
(forall x. Union r (Sem r) x -> Union r' (Sem r') x)
-> Sem r a -> Sem r' a
hoistSem ((forall x. Union (e : r) (Sem (e : r)) x -> Union r (Sem r) x)
-> Sem (e : r) a -> Sem r a)
-> (forall x. Union (e : r) (Sem (e : r)) x -> Union r (Sem r) x)
-> Sem (e : r) a
-> Sem r a
forall a b. (a -> b) -> a -> b
$ \Union (e : r) (Sem (e : r)) x
u -> case Union (e : r) (Sem (e : r)) x
-> Either (Union r (Sem (e : r)) x) (Weaving e (Sem (e : r)) x)
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) (m :: * -> *) a.
Union (e : r) m a -> Either (Union r m a) (Weaving e m a)
decomp Union (e : r) (Sem (e : r)) x
u of
Right (Weaving e (Sem rInitial) a
e f ()
s forall x. f (Sem rInitial x) -> Sem (e : r) (f x)
wv f a -> x
ex forall x. f x -> Maybe x
ins) ->
Weaving (Tagged k e) (Sem r) x -> Union r (Sem r) x
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) (m :: * -> *) a.
Member e r =>
Weaving e m a -> Union r m a
injWeaving (Weaving (Tagged k e) (Sem r) x -> Union r (Sem r) x)
-> Weaving (Tagged k e) (Sem r) x -> Union r (Sem r) x
forall a b. (a -> b) -> a -> b
$ Tagged k e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> Sem r (f x))
-> (f a -> x)
-> (forall x. f x -> Maybe x)
-> Weaving (Tagged k e) (Sem r) x
forall (f :: * -> *) (e :: (* -> *) -> * -> *)
(rInitial :: EffectRow) a resultType (mAfter :: * -> *).
Functor f =>
e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> mAfter (f x))
-> (f a -> resultType)
-> (forall x. f x -> Maybe x)
-> Weaving e mAfter resultType
Weaving (forall (k :: k) (e :: (* -> *) -> * -> *) (m :: * -> *) a.
e m a -> Tagged k e m a
forall {k} {k} {k} (k :: k) (e :: k -> k -> *) (m :: k) (a :: k).
e m a -> Tagged k e m a
Tagged @k e (Sem rInitial) a
e) f ()
s (forall (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member (Tagged k e) r =>
Sem (e : r) a -> Sem r a
forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member (Tagged k e) r =>
Sem (e : r) a -> Sem r a
tag @k (Sem (e : r) (f x) -> Sem r (f x))
-> (f (Sem rInitial x) -> Sem (e : r) (f x))
-> f (Sem rInitial x)
-> Sem r (f x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (Sem rInitial x) -> Sem (e : r) (f x)
forall x. f (Sem rInitial x) -> Sem (e : r) (f x)
wv) f a -> x
ex f x -> Maybe x
forall x. f x -> Maybe x
ins
Left Union r (Sem (e : r)) x
g -> (forall x. Sem (e : r) x -> Sem r x)
-> Union r (Sem (e : r)) x -> Union r (Sem r) x
forall (m :: * -> *) (n :: * -> *) (r :: EffectRow) a.
(forall x. m x -> n x) -> Union r m a -> Union r n a
hoist (forall (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member (Tagged k e) r =>
Sem (e : r) a -> Sem r a
forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Member (Tagged k e) r =>
Sem (e : r) a -> Sem r a
tag @k) Union r (Sem (e : r)) x
g
{-# INLINE tag #-}
tagged
:: forall k e r a
. Sem (e ': r) a
-> Sem (Tagged k e ': r) a
tagged :: forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (e : r) a -> Sem (Tagged k e : r) a
tagged = (forall x.
Union (e : r) (Sem (e : r)) x
-> Union (Tagged k e : r) (Sem (Tagged k e : r)) x)
-> Sem (e : r) a -> Sem (Tagged k e : r) a
forall (r :: EffectRow) (r' :: EffectRow) a.
(forall x. Union r (Sem r) x -> Union r' (Sem r') x)
-> Sem r a -> Sem r' a
hoistSem ((forall x.
Union (e : r) (Sem (e : r)) x
-> Union (Tagged k e : r) (Sem (Tagged k e : r)) x)
-> Sem (e : r) a -> Sem (Tagged k e : r) a)
-> (forall x.
Union (e : r) (Sem (e : r)) x
-> Union (Tagged k e : r) (Sem (Tagged k e : r)) x)
-> Sem (e : r) a
-> Sem (Tagged k e : r) a
forall a b. (a -> b) -> a -> b
$ \Union (e : r) (Sem (e : r)) x
u ->
case Union (e : r) (Sem (e : r)) x
-> Either
(Union (Tagged k e : r) (Sem (e : r)) x)
(Weaving e (Sem (e : r)) x)
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) (m :: * -> *) a
(f :: (* -> *) -> * -> *).
Union (e : r) m a -> Either (Union (f : r) m a) (Weaving e m a)
decompCoerce Union (e : r) (Sem (e : r)) x
u of
Right (Weaving e (Sem rInitial) a
e f ()
s forall x. f (Sem rInitial x) -> Sem (e : r) (f x)
wv f a -> x
ex forall x. f x -> Maybe x
ins) ->
Weaving (Tagged k e) (Sem (Tagged k e : r)) x
-> Union (Tagged k e : r) (Sem (Tagged k e : r)) x
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) (m :: * -> *) a.
Member e r =>
Weaving e m a -> Union r m a
injWeaving (Weaving (Tagged k e) (Sem (Tagged k e : r)) x
-> Union (Tagged k e : r) (Sem (Tagged k e : r)) x)
-> Weaving (Tagged k e) (Sem (Tagged k e : r)) x
-> Union (Tagged k e : r) (Sem (Tagged k e : r)) x
forall a b. (a -> b) -> a -> b
$ Tagged k e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> Sem (Tagged k e : r) (f x))
-> (f a -> x)
-> (forall x. f x -> Maybe x)
-> Weaving (Tagged k e) (Sem (Tagged k e : r)) x
forall (f :: * -> *) (e :: (* -> *) -> * -> *)
(rInitial :: EffectRow) a resultType (mAfter :: * -> *).
Functor f =>
e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> mAfter (f x))
-> (f a -> resultType)
-> (forall x. f x -> Maybe x)
-> Weaving e mAfter resultType
Weaving (forall (k :: k) (e :: (* -> *) -> * -> *) (m :: * -> *) a.
e m a -> Tagged k e m a
forall {k} {k} {k} (k :: k) (e :: k -> k -> *) (m :: k) (a :: k).
e m a -> Tagged k e m a
Tagged @k e (Sem rInitial) a
e) f ()
s (forall (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (e : r) a -> Sem (Tagged k e : r) a
forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (e : r) a -> Sem (Tagged k e : r) a
tagged @k (Sem (e : r) (f x) -> Sem (Tagged k e : r) (f x))
-> (f (Sem rInitial x) -> Sem (e : r) (f x))
-> f (Sem rInitial x)
-> Sem (Tagged k e : r) (f x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (Sem rInitial x) -> Sem (e : r) (f x)
forall x. f (Sem rInitial x) -> Sem (e : r) (f x)
wv) f a -> x
ex f x -> Maybe x
forall x. f x -> Maybe x
ins
Left Union (Tagged k e : r) (Sem (e : r)) x
g -> (forall x. Sem (e : r) x -> Sem (Tagged k e : r) x)
-> Union (Tagged k e : r) (Sem (e : r)) x
-> Union (Tagged k e : r) (Sem (Tagged k e : r)) x
forall (m :: * -> *) (n :: * -> *) (r :: EffectRow) a.
(forall x. m x -> n x) -> Union r m a -> Union r n a
hoist (forall (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (e : r) a -> Sem (Tagged k e : r) a
forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (e : r) a -> Sem (Tagged k e : r) a
tagged @k) Union (Tagged k e : r) (Sem (e : r)) x
g
{-# INLINE tagged #-}
untag
:: forall k e r a
. Sem (Tagged k e ': r) a
-> Sem (e ': r) a
untag :: forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (Tagged k e : r) a -> Sem (e : r) a
untag = (forall x.
Union (Tagged k e : r) (Sem (Tagged k e : r)) x
-> Union (e : r) (Sem (e : r)) x)
-> Sem (Tagged k e : r) a -> Sem (e : r) a
forall (r :: EffectRow) (r' :: EffectRow) a.
(forall x. Union r (Sem r) x -> Union r' (Sem r') x)
-> Sem r a -> Sem r' a
hoistSem ((forall x.
Union (Tagged k e : r) (Sem (Tagged k e : r)) x
-> Union (e : r) (Sem (e : r)) x)
-> Sem (Tagged k e : r) a -> Sem (e : r) a)
-> (forall x.
Union (Tagged k e : r) (Sem (Tagged k e : r)) x
-> Union (e : r) (Sem (e : r)) x)
-> Sem (Tagged k e : r) a
-> Sem (e : r) a
forall a b. (a -> b) -> a -> b
$ \Union (Tagged k e : r) (Sem (Tagged k e : r)) x
u -> case Union (Tagged k e : r) (Sem (Tagged k e : r)) x
-> Either
(Union (e : r) (Sem (Tagged k e : r)) x)
(Weaving (Tagged k e) (Sem (Tagged k e : r)) x)
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) (m :: * -> *) a
(f :: (* -> *) -> * -> *).
Union (e : r) m a -> Either (Union (f : r) m a) (Weaving e m a)
decompCoerce Union (Tagged k e : r) (Sem (Tagged k e : r)) x
u of
Right (Weaving (Tagged e (Sem rInitial) a
e) f ()
s forall x. f (Sem rInitial x) -> Sem (Tagged k e : r) (f x)
wv f a -> x
ex forall x. f x -> Maybe x
ins) ->
ElemOf e (e : r)
-> Weaving e (Sem (e : r)) x -> Union (e : r) (Sem (e : r)) x
forall (e :: (* -> *) -> * -> *) (r :: EffectRow)
(mWoven :: * -> *) a.
ElemOf e r -> Weaving e mWoven a -> Union r mWoven a
Union ElemOf e (e : r)
forall {k} (r :: [k]) (e :: k) (r' :: [k]).
(r ~ (e : r')) =>
ElemOf e r
Here (e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> Sem (e : r) (f x))
-> (f a -> x)
-> (forall x. f x -> Maybe x)
-> Weaving e (Sem (e : r)) x
forall (f :: * -> *) (e :: (* -> *) -> * -> *)
(rInitial :: EffectRow) a resultType (mAfter :: * -> *).
Functor f =>
e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> mAfter (f x))
-> (f a -> resultType)
-> (forall x. f x -> Maybe x)
-> Weaving e mAfter resultType
Weaving e (Sem rInitial) a
e f ()
s (Sem (Tagged k e : r) (f x) -> Sem (e : r) (f x)
forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (Tagged k e : r) a -> Sem (e : r) a
untag (Sem (Tagged k e : r) (f x) -> Sem (e : r) (f x))
-> (f (Sem rInitial x) -> Sem (Tagged k e : r) (f x))
-> f (Sem rInitial x)
-> Sem (e : r) (f x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (Sem rInitial x) -> Sem (Tagged k e : r) (f x)
forall x. f (Sem rInitial x) -> Sem (Tagged k e : r) (f x)
wv) f a -> x
ex f x -> Maybe x
forall x. f x -> Maybe x
ins)
Left Union (e : r) (Sem (Tagged k e : r)) x
g -> (forall x. Sem (Tagged k e : r) x -> Sem (e : r) x)
-> Union (e : r) (Sem (Tagged k e : r)) x
-> Union (e : r) (Sem (e : r)) x
forall (m :: * -> *) (n :: * -> *) (r :: EffectRow) a.
(forall x. m x -> n x) -> Union r m a -> Union r n a
hoist Sem (Tagged k e : r) x -> Sem (e : r) x
forall x. Sem (Tagged k e : r) x -> Sem (e : r) x
forall {k} (k :: k) (e :: (* -> *) -> * -> *) (r :: EffectRow) a.
Sem (Tagged k e : r) a -> Sem (e : r) a
untag Union (e : r) (Sem (Tagged k e : r)) x
g
{-# INLINE untag #-}
retag
:: forall k1 k2 e r a
. Member (Tagged k2 e) r
=> Sem (Tagged k1 e ': r) a
-> Sem r a
retag :: forall {k} {k} (k1 :: k) (k2 :: k) (e :: (* -> *) -> * -> *)
(r :: EffectRow) a.
Member (Tagged k2 e) r =>
Sem (Tagged k1 e : r) a -> Sem r a
retag = (forall x.
Union (Tagged k1 e : r) (Sem (Tagged k1 e : r)) x
-> Union r (Sem r) x)
-> Sem (Tagged k1 e : r) a -> Sem r a
forall (r :: EffectRow) (r' :: EffectRow) a.
(forall x. Union r (Sem r) x -> Union r' (Sem r') x)
-> Sem r a -> Sem r' a
hoistSem ((forall x.
Union (Tagged k1 e : r) (Sem (Tagged k1 e : r)) x
-> Union r (Sem r) x)
-> Sem (Tagged k1 e : r) a -> Sem r a)
-> (forall x.
Union (Tagged k1 e : r) (Sem (Tagged k1 e : r)) x
-> Union r (Sem r) x)
-> Sem (Tagged k1 e : r) a
-> Sem r a
forall a b. (a -> b) -> a -> b
$ \Union (Tagged k1 e : r) (Sem (Tagged k1 e : r)) x
u -> case Union (Tagged k1 e : r) (Sem (Tagged k1 e : r)) x
-> Either
(Union r (Sem (Tagged k1 e : r)) x)
(Weaving (Tagged k1 e) (Sem (Tagged k1 e : r)) x)
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) (m :: * -> *) a.
Union (e : r) m a -> Either (Union r m a) (Weaving e m a)
decomp Union (Tagged k1 e : r) (Sem (Tagged k1 e : r)) x
u of
Right (Weaving (Tagged e (Sem rInitial) a
e) f ()
s forall x. f (Sem rInitial x) -> Sem (Tagged k1 e : r) (f x)
wv f a -> x
ex forall x. f x -> Maybe x
ins) ->
Weaving (Tagged k2 e) (Sem r) x -> Union r (Sem r) x
forall (e :: (* -> *) -> * -> *) (r :: EffectRow) (m :: * -> *) a.
Member e r =>
Weaving e m a -> Union r m a
injWeaving (Weaving (Tagged k2 e) (Sem r) x -> Union r (Sem r) x)
-> Weaving (Tagged k2 e) (Sem r) x -> Union r (Sem r) x
forall a b. (a -> b) -> a -> b
$ Tagged k2 e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> Sem r (f x))
-> (f a -> x)
-> (forall x. f x -> Maybe x)
-> Weaving (Tagged k2 e) (Sem r) x
forall (f :: * -> *) (e :: (* -> *) -> * -> *)
(rInitial :: EffectRow) a resultType (mAfter :: * -> *).
Functor f =>
e (Sem rInitial) a
-> f ()
-> (forall x. f (Sem rInitial x) -> mAfter (f x))
-> (f a -> resultType)
-> (forall x. f x -> Maybe x)
-> Weaving e mAfter resultType
Weaving (forall (k :: k) (e :: (* -> *) -> * -> *) (m :: * -> *) a.
e m a -> Tagged k e m a
forall {k} {k} {k} (k :: k) (e :: k -> k -> *) (m :: k) (a :: k).
e m a -> Tagged k e m a
Tagged @k2 e (Sem rInitial) a
e) f ()
s (forall (k1 :: k) (k2 :: k) (e :: (* -> *) -> * -> *)
(r :: EffectRow) a.
Member (Tagged k2 e) r =>
Sem (Tagged k1 e : r) a -> Sem r a
forall {k} {k} (k1 :: k) (k2 :: k) (e :: (* -> *) -> * -> *)
(r :: EffectRow) a.
Member (Tagged k2 e) r =>
Sem (Tagged k1 e : r) a -> Sem r a
retag @_ @k2 (Sem (Tagged k1 e : r) (f x) -> Sem r (f x))
-> (f (Sem rInitial x) -> Sem (Tagged k1 e : r) (f x))
-> f (Sem rInitial x)
-> Sem r (f x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (Sem rInitial x) -> Sem (Tagged k1 e : r) (f x)
forall x. f (Sem rInitial x) -> Sem (Tagged k1 e : r) (f x)
wv) f a -> x
ex f x -> Maybe x
forall x. f x -> Maybe x
ins
Left Union r (Sem (Tagged k1 e : r)) x
g -> (forall x. Sem (Tagged k1 e : r) x -> Sem r x)
-> Union r (Sem (Tagged k1 e : r)) x -> Union r (Sem r) x
forall (m :: * -> *) (n :: * -> *) (r :: EffectRow) a.
(forall x. m x -> n x) -> Union r m a -> Union r n a
hoist (forall (k1 :: k) (k2 :: k) (e :: (* -> *) -> * -> *)
(r :: EffectRow) a.
Member (Tagged k2 e) r =>
Sem (Tagged k1 e : r) a -> Sem r a
forall {k} {k} (k1 :: k) (k2 :: k) (e :: (* -> *) -> * -> *)
(r :: EffectRow) a.
Member (Tagged k2 e) r =>
Sem (Tagged k1 e : r) a -> Sem r a
retag @_ @k2) Union r (Sem (Tagged k1 e : r)) x
g
{-# INLINE retag #-}