{-# LANGUAGE DataKinds #-} {-# LANGUAGE MagicHash #-} -- | -- Module : Data.POMap.Strict -- Copyright : (c) Sebastian Graf 2017 -- License : MIT -- Maintainer : sgraf1337@gmail.com -- Portability : portable -- -- A reasonably efficient implementation of partially ordered maps from keys to values -- (dictionaries). -- -- The API of this module is strict in both the keys and the values. -- If you need value-lazy maps, use "Data.POMap.Lazy" instead. -- The 'POMap' type is shared between the lazy and strict modules, -- meaning that the same 'POMap' value can be passed to functions in -- both modules (although that is rarely needed). -- -- A consequence of this is that the 'Functor', 'Traversable' and 'Data' instances -- are the same as for the "Data.POMap.Lazy" module, so if they are used -- on strict maps, the resulting maps will be lazy. -- -- These modules are intended to be imported qualified, to avoid name -- clashes with Prelude functions, e.g. -- -- > import qualified Data.POMap.Strict as POMap -- -- The implementation of 'POMap' is based on a decomposition of -- chains (totally ordered submaps), inspired by -- [\"Sorting and Selection in Posets\"](https://arxiv.org/abs/0707.1532). -- -- Operation comments contain the operation time complexity in -- [Big-O notation](http://en.wikipedia.org/wiki/Big_O_notation) and -- commonly refer to two characteristics of the poset from which keys are drawn: -- The number of elements in the map \(n\) and the /width/ \(w\) of the poset, -- referring to the size of the biggest anti-chain (set of incomparable elements). -- -- Generally speaking, lookup and mutation operations incur an additional -- factor of \(\mathcal{O}(w)\) compared to their counter-parts in "Data.Map.Strict". -- -- Note that for practical applications, the width of the poset should be -- in the order of \(w\in \mathcal{O}(\frac{n}{\log n})\), otherwise a simple lookup list -- is asymptotically superior. -- Even if that holds, the constants might be too big to be useful for any \(n\) that can -- can happen in practice. -- -- The following examples assume the following definitions for a map on the divisibility -- relation on `Int`egers: -- -- @ -- {-\# LANGUAGE GeneralizedNewtypeDeriving \#-} -- -- import Algebra.PartialOrd -- import Data.POMap.Strict (POMap) -- import qualified Data.POMap.Strict as POMap -- -- newtype Divisibility -- = Div Int -- deriving (Eq, Read, Show, Num) -- -- default (Divisibility) -- -- instance 'PartialOrd' Divisibility where -- Div a \`leq\` Div b = b \`mod\` a == 0 -- -- type DivMap a = POMap Divisibility a -- -- -- We want integer literals to be interpreted as 'Divisibility's -- -- and default 'empty's to DivMap String. -- default (Divisibility, DivMap String) -- @ -- -- 'Divisility' is actually an example for a 'PartialOrd' that should not be used as keys of 'POMap'. -- Its width is \(w=\frac{n}{2}\in\Omega(n)\)! module Data.POMap.Strict ( -- * Map type Impl.POMap -- * Query , null , Impl.size , Impl.width , Impl.member , Impl.notMember , Impl.lookup , Impl.findWithDefault , Impl.lookupLT , Impl.lookupGT , Impl.lookupLE , Impl.lookupGE -- * Construction , Impl.empty , singleton -- ** Insertion , insert , insertWith , insertWithKey , insertLookupWithKey -- ** Delete\/Update , Impl.delete , Impl.deleteLookup , adjust , adjustWithKey , adjustLookupWithKey , update , updateWithKey , updateLookupWithKey , alter , alterWithKey , alterLookupWithKey , alterF -- * Combine -- ** Union , Impl.union , Impl.unionWith , Impl.unionWithKey , Impl.unions , Impl.unionsWith -- ** Difference , Impl.difference , Impl.differenceWith , Impl.differenceWithKey -- ** Intersection , Impl.intersection , Impl.intersectionWith , Impl.intersectionWithKey -- * Traversal -- ** Map , map , mapWithKey , traverseWithKey , traverseMaybeWithKey , mapAccum , mapAccumWithKey , Impl.mapKeys , mapKeysWith , Impl.mapKeysMonotonic -- * Folds , Impl.foldrWithKey , Impl.foldlWithKey , Impl.foldMapWithKey -- ** Strict folds , Impl.foldr' , Impl.foldl' , Impl.foldrWithKey' , Impl.foldlWithKey' -- * Conversion , Impl.elems , Impl.keys , Impl.assocs -- ** Lists , Impl.toList , fromList , fromListWith , fromListWithKey , Impl.toLinearisation , fromLinearisation -- * Filter , Impl.filter , Impl.filterWithKey , Impl.partition , Impl.partitionWithKey , Impl.takeWhileAntitone , Impl.dropWhileAntitone , Impl.spanAntitone , mapMaybe , mapMaybeWithKey , mapEither , mapEitherWithKey -- * Submap , Impl.isSubmapOf, Impl.isSubmapOfBy , Impl.isProperSubmapOf, Impl.isProperSubmapOfBy -- * Min\/Max , Impl.lookupMin , Impl.lookupMax ) where import Algebra.PartialOrd import Data.Map.Internal (AreWeStrict (..)) import Data.POMap.Internal (POMap (..)) import qualified Data.POMap.Internal as Impl import GHC.Exts (Proxy#, proxy#) import Prelude hiding (map) -- $setup -- This is some setup code for @doctest@. -- >>> :set -XGeneralizedNewtypeDeriving -- >>> import Algebra.PartialOrd -- >>> import Data.POMap.Strict -- >>> :{ -- newtype Divisibility -- = Div Int -- deriving (Eq, Num) -- instance Show Divisibility where -- show (Div a) = show a -- instance PartialOrd Divisibility where -- Div a `leq` Div b = b `mod` a == 0 -- type DivMap a = POMap Divisibility a -- default (Divisibility, DivMap String) -- :} -- | \(\mathcal{O}(1)\). A map with a single element. -- -- >>> singleton 1 'a' -- fromList [(1,'a')] -- >>> size (singleton 1 'a') -- 1 singleton :: k -> v -> POMap k v singleton :: k -> v -> POMap k v singleton = Proxy# 'Strict -> k -> v -> POMap k v forall (s :: AreWeStrict) k v. SingIAreWeStrict s => Proxy# s -> k -> v -> POMap k v Impl.singleton (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE singleton #-} -- | \(\mathcal{O}(w\log n)\). -- Insert a new key and value in the map. -- If the key is already present in the map, the associated value is -- replaced with the supplied value. 'insert' is equivalent to -- @'insertWith' 'const'@. -- -- >>> insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3,'b'), (5,'x')] -- True -- >>> insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3,'b'), (5,'a'), (7,'x')] -- True -- >>> insert 5 'x' empty == singleton 5 'x' -- True insert :: PartialOrd k => k -> v -> POMap k v -> POMap k v insert :: k -> v -> POMap k v -> POMap k v insert = Proxy# 'Strict -> k -> v -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> k -> v -> POMap k v -> POMap k v Impl.insert (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE insert #-} -- | \(\mathcal{O}(w\log n)\). Insert with a function, combining new value and old value. -- @'insertWith' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the pair @(key, f new_value old_value)@. -- -- >>> insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")] -- True -- >>> insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- True -- >>> insertWith (++) 5 "xxx" empty == singleton 5 "xxx" -- True insertWith :: PartialOrd k => (v -> v -> v) -> k -> v -> POMap k v -> POMap k v insertWith :: (v -> v -> v) -> k -> v -> POMap k v -> POMap k v insertWith = Proxy# 'Strict -> (v -> v -> v) -> k -> v -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (v -> v -> v) -> k -> v -> POMap k v -> POMap k v Impl.insertWith (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE insertWith #-} -- | \(\mathcal{O}(w\log n)\). Insert with a function, combining key, new value and old value. -- @'insertWithKey' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert the pair @(key,f key new_value old_value)@. -- Note that the key passed to f is the same key passed to 'insertWithKey'. -- -- >>> let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- >>> insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")] -- True -- >>> insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- True -- >>> insertWithKey f 5 "xxx" empty == singleton 5 "xxx" -- True insertWithKey :: PartialOrd k => (k -> v -> v -> v) -> k -> v -> POMap k v -> POMap k v insertWithKey :: (k -> v -> v -> v) -> k -> v -> POMap k v -> POMap k v insertWithKey = Proxy# 'Strict -> (k -> v -> v -> v) -> k -> v -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> v -> v -> v) -> k -> v -> POMap k v -> POMap k v Impl.insertWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE insertWithKey #-} -- | \(\mathcal{O}(w\log n)\). Combines insert operation with old value retrieval. -- The expression (@'insertLookupWithKey' f k x map@) -- is a pair where the first element is equal to (@'lookup' k map@) -- and the second element equal to (@'insertWithKey' f k x map@). -- -- >>> let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- >>> insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")]) -- True -- >>> insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")]) -- True -- >>> insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx") -- True -- -- This is how to define @insertLookup@ using @insertLookupWithKey@: -- -- >>> let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t -- >>> insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")]) -- True -- >>> insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")]) -- True insertLookupWithKey :: PartialOrd k => (k -> v -> v -> v) -> k -> v -> POMap k v -> (Maybe v, POMap k v) insertLookupWithKey :: (k -> v -> v -> v) -> k -> v -> POMap k v -> (Maybe v, POMap k v) insertLookupWithKey = Proxy# 'Strict -> (k -> v -> v -> v) -> k -> v -> POMap k v -> (Maybe v, POMap k v) forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> v -> v -> v) -> k -> v -> POMap k v -> (Maybe v, POMap k v) Impl.insertLookupWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE insertLookupWithKey #-} -- | \(\mathcal{O}(w\log n)\). Adjust a value at a specific key with the -- result of the provided function. -- When the key is not a member of the map, the original map is returned. -- -- >>> adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- True -- >>> adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- True -- >>> adjust ("new " ++) 7 empty == empty -- True adjust :: PartialOrd k => (v -> v) -> k -> POMap k v -> POMap k v adjust :: (v -> v) -> k -> POMap k v -> POMap k v adjust = Proxy# 'Strict -> (v -> v) -> k -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (v -> v) -> k -> POMap k v -> POMap k v Impl.adjust (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE adjust #-} -- | \(\mathcal{O}(w\log n)\). Adjust a value at a specific key with the -- result of the provided function. -- When the key is not a member of the map, the original map is returned. -- -- >>> let f key x = (show key) ++ ":new " ++ x -- >>> adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- True -- >>> adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- True -- >>> adjustWithKey f 7 empty == empty -- True adjustWithKey :: PartialOrd k => (k -> v -> v) -> k -> POMap k v -> POMap k v adjustWithKey :: (k -> v -> v) -> k -> POMap k v -> POMap k v adjustWithKey = Proxy# 'Strict -> (k -> v -> v) -> k -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> v -> v) -> k -> POMap k v -> POMap k v Impl.adjustWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE adjustWithKey #-} -- | \(\mathcal{O}(w\log n)\). Adjust a value at a specific key with the -- result of the provided function and simultaneously look up the old value -- at that key. -- When the key is not a member of the map, the original map is returned. -- -- >>> let f key old_value = show key ++ ":" ++ show 42 ++ "|" ++ old_value -- >>> adjustLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:42|a")]) -- True -- >>> adjustLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) -- True -- >>> adjustLookupWithKey f 5 empty == (Nothing, empty) -- True adjustLookupWithKey :: PartialOrd k => (k -> v -> v) -> k -> POMap k v -> (Maybe v, POMap k v) adjustLookupWithKey :: (k -> v -> v) -> k -> POMap k v -> (Maybe v, POMap k v) adjustLookupWithKey = Proxy# 'Strict -> (k -> v -> v) -> k -> POMap k v -> (Maybe v, POMap k v) forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> v -> v) -> k -> POMap k v -> (Maybe v, POMap k v) Impl.adjustLookupWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE adjustLookupWithKey #-} -- | \(\mathcal{O}(w\log n)\). The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. -- -- >>> let f x = if x == "a" then Just "new a" else Nothing -- >>> update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- True -- >>> update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- True -- >>> update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" -- True update :: PartialOrd k => (v -> Maybe v) -> k -> POMap k v -> POMap k v update :: (v -> Maybe v) -> k -> POMap k v -> POMap k v update = Proxy# 'Strict -> (v -> Maybe v) -> k -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (v -> Maybe v) -> k -> POMap k v -> POMap k v Impl.update (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE update #-} -- | \(\mathcal{O}(w\log n)\). The expression (@'updateWithKey' f k map@) updates the -- value @x@ at @k@ (if it is in the map). If (@f k x@) is 'Nothing', -- the element is deleted. If it is (@'Just' y@), the key @k@ is bound -- to the new value @y@. -- -- >>> let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- >>> updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- True -- >>> updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- True -- >>> updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" -- True updateWithKey :: PartialOrd k => (k -> v -> Maybe v) -> k -> POMap k v -> POMap k v updateWithKey :: (k -> v -> Maybe v) -> k -> POMap k v -> POMap k v updateWithKey = Proxy# 'Strict -> (k -> v -> Maybe v) -> k -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> v -> Maybe v) -> k -> POMap k v -> POMap k v Impl.updateWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE updateWithKey #-} -- | \(\mathcal{O}(w\log n)\). Lookup and update. See also 'updateWithKey'. -- __Warning__: Contrary to "Data.Map.Strict", the lookup does /not/ return -- the updated value, but the old value. This is consistent with 'insertLookupWithKey' -- and also @Data.IntMap.Strict.'Data.IntMap.Strict.updateLookupWithKey'@. -- -- Re-apply the updating function to the looked-up value once more to get the -- value in the map, like in the last example: -- -- >>> let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- >>> updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")]) -- True -- >>> updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) -- True -- >>> updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a") -- True -- >>> fst (updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")])) >>= f 5 -- Just "5:new a" updateLookupWithKey :: PartialOrd k => (k -> v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) updateLookupWithKey :: (k -> v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) updateLookupWithKey = Proxy# 'Strict -> (k -> v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) Impl.updateLookupWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE updateLookupWithKey #-} -- | \(\mathcal{O}(w\log n)\). The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alter' can be used to insert, delete, or update a value in a 'Map'. -- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@. -- -- >>> let f _ = Nothing -- >>> alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- True -- >>> alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- True -- >>> let f _ = Just "c" -- >>> alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")] -- True -- >>> alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")] -- True alter :: PartialOrd k => (Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v alter :: (Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v alter = Proxy# 'Strict -> (Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v Impl.alter (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE alter #-} -- | \(\mathcal{O}(w\log n)\). The expression (@'alterWithKey' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alterWithKey' can be used to insert, delete, or update a value in a 'Map'. -- In short : @'lookup' k ('alter' f k m) = f k ('lookup' k m)@. -- -- >>> let f _ _ = Nothing -- >>> alterWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- True -- >>> alterWithKey f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" -- True -- >>> let f k _ = Just (show k ++ ":c") -- >>> alterWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "7:c")] -- True -- >>> alterWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:c")] -- True alterWithKey :: PartialOrd k => (k -> Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v alterWithKey :: (k -> Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v alterWithKey = Proxy# 'Strict -> (k -> Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> Maybe v -> Maybe v) -> k -> POMap k v -> POMap k v Impl.alterWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE alterWithKey #-} -- | \(\mathcal{O}(w\log n)\). Lookup and alteration. See also 'alterWithKey'. -- -- >>> let f k x = if x == Nothing then Just ((show k) ++ ":new a") else Nothing -- >>> alterLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b")]) -- True -- >>> alterLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "7:new a")]) -- True -- >>> alterLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a") -- True alterLookupWithKey :: PartialOrd k => (k -> Maybe v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) alterLookupWithKey :: (k -> Maybe v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) alterLookupWithKey = Proxy# 'Strict -> (k -> Maybe v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> Maybe v -> Maybe v) -> k -> POMap k v -> (Maybe v, POMap k v) Impl.alterLookupWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE alterLookupWithKey #-} -- | \(\mathcal{O}(w\log n)\). -- The expression (@'alterF' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alterF' can be used to inspect, insert, delete, or update a value in a 'Map'. -- In short: @'lookup' k \<$\> 'alterF' f k m = f ('lookup' k m)@. -- -- Example: -- -- @ -- interactiveAlter :: Divibility -> DivMap String -> IO (DivMap String) -- interactiveAlter k m = alterF f k m where -- f Nothing -> do -- putStrLn $ show k ++ -- " was not found in the map. Would you like to add it?" -- getUserResponse1 :: IO (Maybe String) -- f (Just old) -> do -- putStrLn "The key is currently bound to " ++ show old ++ -- ". Would you like to change or delete it?" -- getUserresponse2 :: IO (Maybe String) -- @ -- -- 'alterF' is the most general operation for working with an individual -- key that may or may not be in a given map. When used with trivial -- functors like 'Identity' and 'Const', it is often slightly slower than -- more specialized combinators like 'lookup' and 'insert'. However, when -- the functor is non-trivial and key comparison is not particularly cheap, -- it is the fastest way. alterF :: (Functor f, PartialOrd k) => (Maybe v -> f (Maybe v)) -> k -> POMap k v -> f (POMap k v) alterF :: (Maybe v -> f (Maybe v)) -> k -> POMap k v -> f (POMap k v) alterF = Proxy# 'Strict -> (Maybe v -> f (Maybe v)) -> k -> POMap k v -> f (POMap k v) forall (f :: * -> *) k (s :: AreWeStrict) v. (Functor f, PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (Maybe v -> f (Maybe v)) -> k -> POMap k v -> f (POMap k v) Impl.alterF (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE alterF #-} -- | \(\mathcal{O}(wn\log n)\). -- Build a map from a list of key\/value pairs. -- If the list contains more than one value for the same key, the last value -- for the key is retained. -- -- This version is strict in its values, as opposed to the 'IsList' instance -- for 'POMap'. -- -- >>> fromList [] == (empty :: DivMap String) -- True -- >>> fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")] -- True -- >>> fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")] -- True fromList :: PartialOrd k => [(k, v)] -> POMap k v fromList :: [(k, v)] -> POMap k v fromList = Proxy# 'Strict -> [(k, v)] -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> [(k, v)] -> POMap k v Impl.fromListImpl (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE fromList #-} -- | \(\mathcal{O}(wn\log n)\). -- Build a map from a list of key\/value pairs with a combining function. -- -- This version is strict in its values, as opposed to the 'IsList' instance -- for 'POMap'. -- -- >>> fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")] -- True -- >>> fromListWith (++) [] == (empty :: DivMap String) -- True fromListWith :: PartialOrd k => (v -> v -> v) -> [(k, v)] -> POMap k v fromListWith :: (v -> v -> v) -> [(k, v)] -> POMap k v fromListWith = Proxy# 'Strict -> (v -> v -> v) -> [(k, v)] -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (v -> v -> v) -> [(k, v)] -> POMap k v Impl.fromListWith (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE fromListWith #-} -- | \(\mathcal{O}(wn\log n)\). -- Build a map from a list of key\/value pairs with a combining function. -- -- >>> let f k a1 a2 = (show k) ++ a1 ++ a2 -- >>> fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "3ab"), (5, "5a5ba")] -- True -- >>> fromListWithKey f [] == (empty :: DivMap String) -- True fromListWithKey :: PartialOrd k => (k -> v -> v -> v) -> [(k, v)] -> POMap k v fromListWithKey :: (k -> v -> v -> v) -> [(k, v)] -> POMap k v fromListWithKey = Proxy# 'Strict -> (k -> v -> v -> v) -> [(k, v)] -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> (k -> v -> v -> v) -> [(k, v)] -> POMap k v Impl.fromListWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE fromListWithKey #-} -- | \(\mathcal{O}(wn\log n)\). -- Build a map from a linearisation of key\/value pairs. -- If the list contains more than one value for the same key, the last value -- for the key is retained. fromLinearisation :: PartialOrd k => [(k, v)] -> POMap k v fromLinearisation :: [(k, v)] -> POMap k v fromLinearisation = Proxy# 'Strict -> [(k, v)] -> POMap k v forall k (s :: AreWeStrict) v. (PartialOrd k, SingIAreWeStrict s) => Proxy# s -> [(k, v)] -> POMap k v Impl.fromLinearisation (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE fromLinearisation #-} -- | \(\mathcal{O}(n)\). Map a function over all values in the map. -- -- >>> map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")] -- True map :: (a -> b) -> POMap k a -> POMap k b map :: (a -> b) -> POMap k a -> POMap k b map = Proxy# 'Strict -> (a -> b) -> POMap k a -> POMap k b forall (s :: AreWeStrict) a b k. SingIAreWeStrict s => Proxy# s -> (a -> b) -> POMap k a -> POMap k b Impl.map (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE map #-} -- | \(\mathcal{O}(n)\). Map a function over all values in the map. -- -- >>> let f key x = (show key) ++ ":" ++ x -- >>> mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")] -- True mapWithKey :: (k -> a -> b) -> POMap k a -> POMap k b mapWithKey :: (k -> a -> b) -> POMap k a -> POMap k b mapWithKey = Proxy# 'Strict -> (k -> a -> b) -> POMap k a -> POMap k b forall (s :: AreWeStrict) k a b. SingIAreWeStrict s => Proxy# s -> (k -> a -> b) -> POMap k a -> POMap k b Impl.mapWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapWithKey #-} -- | \(\mathcal{O}(n)\). -- @'traverseWithKey' f m == 'fromList' <$> 'traverse' (\(k, v) -> (\v' -> v' `seq` (k,v')) <$> f k v) ('toList' m)@ -- That is, it behaves much like a regular 'traverse' except that the traversing -- function also has access to the key associated with a value and the values are -- forced before they are installed in the result map. -- -- >>> traverseWithKey (\(Div k) v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')]) -- True -- >>> traverseWithKey (\(Div k) v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')]) == Nothing -- True traverseWithKey :: Applicative t => (k -> a -> t b) -> POMap k a -> t (POMap k b) traverseWithKey :: (k -> a -> t b) -> POMap k a -> t (POMap k b) traverseWithKey = Proxy# 'Strict -> (k -> a -> t b) -> POMap k a -> t (POMap k b) forall (t :: * -> *) (s :: AreWeStrict) k a b. (Applicative t, SingIAreWeStrict s) => Proxy# s -> (k -> a -> t b) -> POMap k a -> t (POMap k b) Impl.traverseWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE traverseWithKey #-} -- | \(\mathcal{O}(n)\). -- The function 'mapAccum' threads an accumulating -- argument through the map in ascending order of keys. -- -- >>> let f a b = (a ++ b, b ++ "X") -- >>> mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")]) -- True mapAccum :: (a -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) mapAccum :: (a -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) mapAccum = Proxy# 'Strict -> (a -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) forall (s :: AreWeStrict) a b c k. SingIAreWeStrict s => Proxy# s -> (a -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) Impl.mapAccum (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapAccum #-} -- | \(\mathcal{O}(n)\). The function 'mapAccumWithKey' threads an accumulating -- argument through the map in ascending order of keys. -- -- >>> let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") -- >>> mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")]) -- True mapAccumWithKey :: (a -> k -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) mapAccumWithKey :: (a -> k -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) mapAccumWithKey = Proxy# 'Strict -> (a -> k -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) forall (s :: AreWeStrict) a k b c. SingIAreWeStrict s => Proxy# s -> (a -> k -> b -> (a, c)) -> a -> POMap k b -> (a, POMap k c) Impl.mapAccumWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapAccumWithKey #-} -- | \(\mathcal{O}(wn\log n)\). -- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the associated values will be -- combined using @c@. -- -- >>> mapKeysWith (+) (\ _ -> 1) (fromList [(1,1), (2,2), (3,3), (4,4)]) == singleton 1 10 -- True -- >>> mapKeysWith (+) (\ _ -> 3) (fromList [(1,1), (2,1), (3,1), (4,1)]) == singleton 3 4 -- True mapKeysWith :: PartialOrd k2 => (v -> v -> v) -> (k1 -> k2) -> POMap k1 v -> POMap k2 v mapKeysWith :: (v -> v -> v) -> (k1 -> k2) -> POMap k1 v -> POMap k2 v mapKeysWith = Proxy# 'Strict -> (v -> v -> v) -> (k1 -> k2) -> POMap k1 v -> POMap k2 v forall k2 (s :: AreWeStrict) v k1. (PartialOrd k2, SingIAreWeStrict s) => Proxy# s -> (v -> v -> v) -> (k1 -> k2) -> POMap k1 v -> POMap k2 v Impl.mapKeysWith (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapKeysWith #-} -- | \(\mathcal{O}(n)\). -- Traverse keys\/values and collect the 'Just' results. -- -- Contrary to 'traverse', this is value-strict. traverseMaybeWithKey :: Applicative t => (k -> a -> t (Maybe b)) -> POMap k a -> t (POMap k b) traverseMaybeWithKey :: (k -> a -> t (Maybe b)) -> POMap k a -> t (POMap k b) traverseMaybeWithKey = Proxy# 'Strict -> (k -> a -> t (Maybe b)) -> POMap k a -> t (POMap k b) forall (f :: * -> *) (s :: AreWeStrict) k a b. (Applicative f, SingIAreWeStrict s) => Proxy# s -> (k -> a -> f (Maybe b)) -> POMap k a -> f (POMap k b) Impl.traverseMaybeWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE traverseMaybeWithKey #-} -- | \(\mathcal{O}(n)\). -- Map values and collect the 'Just' results. -- -- >>> let f x = if x == "a" then Just "new a" else Nothing -- >>> mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a" -- True mapMaybe :: (a -> Maybe b) -> POMap k a -> POMap k b mapMaybe :: (a -> Maybe b) -> POMap k a -> POMap k b mapMaybe = Proxy# 'Strict -> (a -> Maybe b) -> POMap k a -> POMap k b forall (s :: AreWeStrict) a b k. SingIAreWeStrict s => Proxy# s -> (a -> Maybe b) -> POMap k a -> POMap k b Impl.mapMaybe (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapMaybe #-} -- | \(\mathcal{O}(n)\). -- Map keys\/values and collect the 'Just' results. -- -- >>> let f k _ = if k == 3 then Just ("key : " ++ (show k)) else Nothing -- >>> mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3" -- True mapMaybeWithKey :: (k -> a -> Maybe b) -> POMap k a -> POMap k b mapMaybeWithKey :: (k -> a -> Maybe b) -> POMap k a -> POMap k b mapMaybeWithKey = Proxy# 'Strict -> (k -> a -> Maybe b) -> POMap k a -> POMap k b forall (s :: AreWeStrict) k a b. SingIAreWeStrict s => Proxy# s -> (k -> a -> Maybe b) -> POMap k a -> POMap k b Impl.mapMaybeWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapMaybeWithKey #-} -- | \(\mathcal{O}(n)\). -- Map values and separate the 'Left' and 'Right' results. -- -- >>> let f a = if a < "c" then Left a else Right a -- -- >>> :{ -- mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) -- :} -- True -- -- >>> :{ -- mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- :} -- True mapEither :: (a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) mapEither :: (a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) mapEither = Proxy# 'Strict -> (a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) forall (s :: AreWeStrict) a b c k. SingIAreWeStrict s => Proxy# s -> (a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) Impl.mapEither (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapEither #-} -- | \(\mathcal{O}(n)\). -- Map keys\/values and separate the 'Left' and 'Right' results. -- -- >>> let f (Div k) a = if k < 5 then Left (k * 2) else Right (a ++ a) -- -- >>> :{ -- mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) -- :} -- True -- -- >>> :{ -- mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")]) -- :} -- True mapEitherWithKey :: (k -> a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) mapEitherWithKey :: (k -> a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) mapEitherWithKey = Proxy# 'Strict -> (k -> a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) forall (s :: AreWeStrict) k a b c. SingIAreWeStrict s => Proxy# s -> (k -> a -> Either b c) -> POMap k a -> (POMap k b, POMap k c) Impl.mapEitherWithKey (Proxy# 'Strict forall k (a :: k). Proxy# a proxy# :: Proxy# 'Strict) {-# INLINE mapEitherWithKey #-}