{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
module Text.PrettyPrint.GHCi.Value.Parser (
  parseValue,
  Id, Op, Value(..),
) where

import Text.PrettyPrint.GHCi.Value.Lexer

import qualified Data.List.NonEmpty as N
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 1.19.9

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: (Value) -> (HappyAbsSyn )
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn ) -> (Value)
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyIn5 :: ([Value]) -> (HappyAbsSyn )
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> ([Value])
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut5 #-}
happyIn6 :: (Value) -> (HappyAbsSyn )
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> (Value)
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut6 #-}
happyIn7 :: ([Value]) -> (HappyAbsSyn )
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> ([Value])
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut7 #-}
happyIn8 :: ((Id, Value)) -> (HappyAbsSyn )
happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> ((Id, Value))
happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut8 #-}
happyIn9 :: (N.NonEmpty (Id, Value)) -> (HappyAbsSyn )
happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> (N.NonEmpty (Id, Value))
happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut9 #-}
happyIn10 :: (Value) -> (HappyAbsSyn )
happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> (Value)
happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut10 #-}
happyIn11 :: ([(Op, Value)]) -> (HappyAbsSyn )
happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> ([(Op, Value)])
happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut11 #-}
happyIn12 :: (Value) -> (HappyAbsSyn )
happyIn12 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> (Value)
happyOut12 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut12 #-}
happyInTok :: (Token) -> (HappyAbsSyn )
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyExpList :: HappyAddr
happyExpList = HappyA# "\x00\x70\x0b\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\xf7\x00\x00\xdc\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x0b\x00\x00\x0c\x00\x00\x08\x00\x00\xdc\x02\x00\x00\x00\x00\x00\x00\x03\x00\x00\x10\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x08\x00\x00\x24\x00\x00\x00\x00\xc0\x2d\x00\x00\x00\x00\x00\x00\x01\x00\x70\x0b\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x70\x0b\x00\x00\x00\x00\x00\x00\x00"#

{-# NOINLINE happyExpListPerState #-}
happyExpListPerState st =
    token_strs_expected
  where token_strs = ["error","%dummy","%start_parseTokens","atom","comma_values","prefix","prefix_apps","field","fields","infixes","infixes_sufs","value","number","string","character","operator","identifier","'('","')'","'['","']'","'{'","'}'","','","'='","%eof"]
        bit_start = st * 26
        bit_end = (st + 1) * 26
        read_bit = readArrayBit happyExpList
        bits = map read_bit [bit_start..bit_end - 1]
        bits_indexed = zip bits [0..25]
        token_strs_expected = concatMap f bits_indexed
        f (False, _) = []
        f (True, nr) = [token_strs !! nr]

happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x30\x00\x2b\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf3\xff\x00\x00\x00\x00\x2a\x00\x28\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x0a\x00\x33\x00\x40\x00\x00\x00\x0e\x00\x2f\x00\x3b\x00\x00\x00\x00\x00\x3d\x00\xfc\xff\x00\x00\x40\x00\x00\x00\x44\x00\x40\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x3a\x00\x00\x00\x40\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x0b\x00\x00\x00\x00\x00\x00\x00\x48\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4d\x00\x0c\x00\x15\x00\x50\x00\x00\x00\x51\x00\x00\x00\x53\x00\x49\x00\x00\x00\x4a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x52\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00"#

happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset off = off

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\xfe\xff\xf3\xff\xea\xff\xe8\xff\x00\x00\xfd\xff\xfc\xff\xf2\xff\x00\x00\x00\x00\xf7\xff\xf9\xff\xf7\xff\xfb\xff\xf5\xff\x00\x00\xeb\xff\x00\x00\xed\xff\x00\x00\x00\x00\x00\x00\xf1\xff\xf0\xff\x00\x00\x00\x00\xf8\xff\x00\x00\xfa\xff\x00\x00\x00\x00\xf4\xff\x00\x00\xe9\xff\xec\xff\xef\xff\x00\x00\xf6\xff\x00\x00\xee\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x0e\x00\x01\x00\x02\x00\x03\x00\x09\x00\x05\x00\x06\x00\x0c\x00\x08\x00\x09\x00\x00\x00\x00\x00\x02\x00\x02\x00\x05\x00\x06\x00\x06\x00\x06\x00\x08\x00\x08\x00\x00\x00\x00\x00\x02\x00\x02\x00\x0b\x00\x0c\x00\x06\x00\x06\x00\x08\x00\x08\x00\x00\x00\x00\x00\x02\x00\x02\x00\x05\x00\x06\x00\x06\x00\x06\x00\x08\x00\x08\x00\x01\x00\x02\x00\x03\x00\x01\x00\x05\x00\x06\x00\x07\x00\x08\x00\x01\x00\x02\x00\x03\x00\x0a\x00\x05\x00\x06\x00\x04\x00\x08\x00\x01\x00\x02\x00\x03\x00\x0d\x00\x05\x00\x06\x00\x04\x00\x08\x00\x01\x00\x02\x00\x03\x00\x07\x00\x05\x00\x06\x00\x0d\x00\x08\x00\x0c\x00\x00\x00\x07\x00\x02\x00\x04\x00\x05\x00\x07\x00\x03\x00\x01\x00\x01\x00\x00\x00\xff\xff\xff\xff\x04\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\xff\xff\x03\x00\x08\x00\x09\x00\x1d\x00\x0a\x00\x0b\x00\x1e\x00\x0c\x00\x0e\x00\x03\x00\x03\x00\x04\x00\x04\x00\x17\x00\x18\x00\x05\x00\x05\x00\x06\x00\x0e\x00\x03\x00\x03\x00\x04\x00\x04\x00\x22\x00\x23\x00\x05\x00\x05\x00\x0c\x00\x27\x00\x03\x00\x03\x00\x04\x00\x04\x00\x17\x00\x18\x00\x05\x00\x05\x00\x25\x00\x29\x00\x03\x00\x08\x00\x09\x00\x03\x00\x0a\x00\x0b\x00\x10\x00\x0c\x00\x03\x00\x08\x00\x09\x00\x12\x00\x0a\x00\x0b\x00\x14\x00\x0c\x00\x03\x00\x08\x00\x09\x00\x21\x00\x1a\x00\x0b\x00\x20\x00\x0c\x00\x03\x00\x08\x00\x09\x00\x1f\x00\x0a\x00\x0b\x00\x29\x00\x0c\x00\x1e\x00\x03\x00\x27\x00\x23\x00\x14\x00\x15\x00\x12\x00\x10\x00\x1b\x00\x1a\x00\x18\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 23) [
        (1 , happyReduce_1),
        (2 , happyReduce_2),
        (3 , happyReduce_3),
        (4 , happyReduce_4),
        (5 , happyReduce_5),
        (6 , happyReduce_6),
        (7 , happyReduce_7),
        (8 , happyReduce_8),
        (9 , happyReduce_9),
        (10 , happyReduce_10),
        (11 , happyReduce_11),
        (12 , happyReduce_12),
        (13 , happyReduce_13),
        (14 , happyReduce_14),
        (15 , happyReduce_15),
        (16 , happyReduce_16),
        (17 , happyReduce_17),
        (18 , happyReduce_18),
        (19 , happyReduce_19),
        (20 , happyReduce_20),
        (21 , happyReduce_21),
        (22 , happyReduce_22),
        (23 , happyReduce_23)
        ]

happy_n_terms = 15 :: Int
happy_n_nonterms = 9 :: Int

happyReduce_1 = happySpecReduce_1  0# happyReduction_1
happyReduction_1 happy_x_1
         =  case happyOutTok happy_x_1 of { (NumberTok happy_var_1) ->
        happyIn4
                 (Num   happy_var_1
        )}

happyReduce_2 = happySpecReduce_1  0# happyReduction_2
happyReduction_2 happy_x_1
         =  case happyOutTok happy_x_1 of { (StringTok happy_var_1) ->
        happyIn4
                 (Str   happy_var_1
        )}

happyReduce_3 = happySpecReduce_1  0# happyReduction_3
happyReduction_3 happy_x_1
         =  case happyOutTok happy_x_1 of { (CharacterTok happy_var_1) ->
        happyIn4
                 (Char  happy_var_1
        )}

happyReduce_4 = happySpecReduce_2  0# happyReduction_4
happyReduction_4 happy_x_2
        happy_x_1
         =  happyIn4
                 (Tuple []
        )

happyReduce_5 = happyReduce 4# 0# happyReduction_5
happyReduction_5 (happy_x_4 `HappyStk`
        happy_x_3 `HappyStk`
        happy_x_2 `HappyStk`
        happy_x_1 `HappyStk`
        happyRest)
         = case happyOut12 happy_x_2 of { happy_var_2 ->
        case happyOut5 happy_x_3 of { happy_var_3 ->
        happyIn4
                 (if null happy_var_3
                                           then Paren happy_var_2
                                           else Tuple (happy_var_2 : reverse happy_var_3)
        ) `HappyStk` happyRest}}

happyReduce_6 = happySpecReduce_2  0# happyReduction_6
happyReduction_6 happy_x_2
        happy_x_1
         =  happyIn4
                 (List []
        )

happyReduce_7 = happyReduce 4# 0# happyReduction_7
happyReduction_7 (happy_x_4 `HappyStk`
        happy_x_3 `HappyStk`
        happy_x_2 `HappyStk`
        happy_x_1 `HappyStk`
        happyRest)
         = case happyOut12 happy_x_2 of { happy_var_2 ->
        case happyOut5 happy_x_3 of { happy_var_3 ->
        happyIn4
                 (List (happy_var_2 : reverse happy_var_3)
        ) `HappyStk` happyRest}}

happyReduce_8 = happySpecReduce_0  1# happyReduction_8
happyReduction_8  =  happyIn5
                 ([]
        )

happyReduce_9 = happySpecReduce_3  1# happyReduction_9
happyReduction_9 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut5 happy_x_1 of { happy_var_1 ->
        case happyOut12 happy_x_3 of { happy_var_3 ->
        happyIn5
                 (happy_var_3 : happy_var_1
        )}}

happyReduce_10 = happySpecReduce_2  2# happyReduction_10
happyReduction_10 happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { (IdentifierTok happy_var_1) ->
        case happyOut7 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (Prefix happy_var_1 (reverse happy_var_2)
        )}}

happyReduce_11 = happyReduce 4# 2# happyReduction_11
happyReduction_11 (happy_x_4 `HappyStk`
        happy_x_3 `HappyStk`
        happy_x_2 `HappyStk`
        happy_x_1 `HappyStk`
        happyRest)
         = case happyOutTok happy_x_1 of { (IdentifierTok happy_var_1) ->
        case happyOut9 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (Record happy_var_1 (N.reverse happy_var_3)
        ) `HappyStk` happyRest}}

happyReduce_12 = happySpecReduce_1  2# happyReduction_12
happyReduction_12 happy_x_1
         =  case happyOut4 happy_x_1 of { happy_var_1 ->
        happyIn6
                 (happy_var_1
        )}

happyReduce_13 = happySpecReduce_0  3# happyReduction_13
happyReduction_13  =  happyIn7
                 ([]
        )

happyReduce_14 = happySpecReduce_2  3# happyReduction_14
happyReduction_14 happy_x_2
        happy_x_1
         =  case happyOut7 happy_x_1 of { happy_var_1 ->
        case happyOut4 happy_x_2 of { happy_var_2 ->
        happyIn7
                 (happy_var_2           : happy_var_1
        )}}

happyReduce_15 = happySpecReduce_2  3# happyReduction_15
happyReduction_15 happy_x_2
        happy_x_1
         =  case happyOut7 happy_x_1 of { happy_var_1 ->
        case happyOutTok happy_x_2 of { (IdentifierTok happy_var_2) ->
        happyIn7
                 (Prefix happy_var_2 [] : happy_var_1
        )}}

happyReduce_16 = happySpecReduce_3  4# happyReduction_16
happyReduction_16 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { (IdentifierTok happy_var_1) ->
        case happyOut12 happy_x_3 of { happy_var_3 ->
        happyIn8
                 ((happy_var_1,               happy_var_3)
        )}}

happyReduce_17 = happyReduce 5# 4# happyReduction_17
happyReduction_17 (happy_x_5 `HappyStk`
        happy_x_4 `HappyStk`
        happy_x_3 `HappyStk`
        happy_x_2 `HappyStk`
        happy_x_1 `HappyStk`
        happyRest)
         = case happyOutTok happy_x_2 of { (OperatorTok happy_var_2) ->
        case happyOut12 happy_x_5 of { happy_var_5 ->
        happyIn8
                 (("(" ++ happy_var_2 ++ ")", happy_var_5)
        ) `HappyStk` happyRest}}

happyReduce_18 = happySpecReduce_1  5# happyReduction_18
happyReduction_18 happy_x_1
         =  case happyOut8 happy_x_1 of { happy_var_1 ->
        happyIn9
                 (happy_var_1 N.:| []
        )}

happyReduce_19 = happySpecReduce_3  5# happyReduction_19
happyReduction_19 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut9 happy_x_1 of { happy_var_1 ->
        case happyOut8 happy_x_3 of { happy_var_3 ->
        happyIn9
                 (N.cons happy_var_3 happy_var_1
        )}}

happyReduce_20 = happySpecReduce_2  6# happyReduction_20
happyReduction_20 happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_1 of { happy_var_1 ->
        case happyOut11 happy_x_2 of { happy_var_2 ->
        happyIn10
                 (case happy_var_2 of
                                           [] -> happy_var_1
                                           x : xs -> Infix happy_var_1 (N.reverse (x N.:| xs))
        )}}

happyReduce_21 = happySpecReduce_0  7# happyReduction_21
happyReduction_21  =  happyIn11
                 ([]
        )

happyReduce_22 = happySpecReduce_3  7# happyReduction_22
happyReduction_22 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut11 happy_x_1 of { happy_var_1 ->
        case happyOutTok happy_x_2 of { (OperatorTok happy_var_2) ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn11
                 ((happy_var_2, happy_var_3) : happy_var_1
        )}}}

happyReduce_23 = happySpecReduce_1  8# happyReduction_23
happyReduction_23 happy_x_1
         =  case happyOut10 happy_x_1 of { happy_var_1 ->
        happyIn12
                 (happy_var_1
        )}

happyNewToken action sts stk [] =
        happyDoAction 14# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
        let cont i = happyDoAction i tk action sts stk tks in
        case tk of {
        NumberTok happy_dollar_dollar -> cont 1#;
        StringTok happy_dollar_dollar -> cont 2#;
        CharacterTok happy_dollar_dollar -> cont 3#;
        OperatorTok happy_dollar_dollar -> cont 4#;
        IdentifierTok happy_dollar_dollar -> cont 5#;
        OpenParen -> cont 6#;
        CloseParen -> cont 7#;
        OpenBracket -> cont 8#;
        CloseBracket -> cont 9#;
        OpenBrace -> cont 10#;
        CloseBrace -> cont 11#;
        Comma -> cont 12#;
        Equal -> cont 13#;
        _ -> happyError' ((tk:tks), [])
        }

happyError_ explist 14# tk tks = happyError' (tks, explist)
happyError_ explist _ tk tks = happyError' ((tk:tks), explist)

happyThen :: () => Maybe a -> (a -> Maybe b) -> Maybe b
happyThen = ((>>=))
happyReturn :: () => a -> Maybe a
happyReturn = (return)
happyThen1 m k tks = ((>>=)) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> Maybe a
happyReturn1 = \a tks -> (return) a
happyError' :: () => ([(Token)], [String]) -> Maybe a
happyError' = (\(tokens, _) -> happyError tokens)
parseTokens tks = happySomeParser where
 happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut12 x))

happySeq = happyDontSeq


-- | Throws an exception, not particularly helpful
happyError :: [Token] -> Maybe a
happyError _ = Nothing

-- | A @conid@ or @varid@ (possibly ending in hashes, to account for @MagicHash@)
type Id = String

-- | A @conop@ or @varop@
type Op = String

-- | A very simple representation of the output of 'Show'
data Value
  = Prefix Id [Value]
  | Infix Value (N.NonEmpty (Op, Value))
  | Record Id (N.NonEmpty (Id, Value))
  | Tuple [Value]
  | List [Value]
  | Num String  -- ^ integer or floating point
  | Char String -- ^ character
  | Str String  -- ^ string
  | Paren Value
  deriving Show

-- | Parse a value from a 'String'. Returns 'Nothing' for inputs that
-- could not be parsed.
parseValue :: String -> Maybe Value
parseValue = parseTokens . filter notWhite . lexTokens
  where
    notWhite (WhiteTok _) = False
    notWhite _ = True
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 10 "<command-line>" #-}
# 1 "/usr/include/stdc-predef.h" 1 3 4

# 17 "/usr/include/stdc-predef.h" 3 4














































{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/opt/ghc/8.6.3/lib/ghc-8.6.3/include/ghcversion.h" #-}















{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/tmp/ghc780_0/ghc_2.h" #-}






































































































































































































{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 













-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
{-# LINE 43 "templates/GenericTemplate.hs" #-}

data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList







{-# LINE 65 "templates/GenericTemplate.hs" #-}

{-# LINE 75 "templates/GenericTemplate.hs" #-}

{-# LINE 84 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}


          case action of
                0#           -> {- nothing -}
                                     happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}


                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
         off_i  = (off Happy_GHC_Exts.+#  i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st




indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#




{-# INLINE happyLt #-}
happyLt x y = LT(x,y)


readArrayBit arr bit =
    Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
  where unbox_int (Happy_GHC_Exts.I# x) = x






data HappyAddr = HappyA# Happy_GHC_Exts.Addr#


-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 180 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
             off_i = (off Happy_GHC_Exts.+#  nt)
             new_state = indexShortOffAddr happyTable off_i




          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st =
   {- nothing -}
   happyDoAction j tk new_state
   where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
         off_i = (off Happy_GHC_Exts.+#  nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ explist i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail explist i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.