{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UnboxedTuples #-}
module Data.Map.Subset.Lazy.Internal
( Map
, lookup
, empty
, singleton
, antisingleton
, fromPolarities
, toList
, fromList
) where
import Prelude hiding (lookup,concat)
import Data.Bifunctor (first)
import Data.Bool (bool)
import Data.Primitive (Array)
import Data.Primitive.Contiguous (Contiguous,Element)
import Data.Semigroup (Semigroup,(<>),First(..))
import Data.Set.Internal (Set(..))
import qualified Data.Foldable as F
import qualified Data.Map.Internal as M
import qualified Data.Primitive.Contiguous as A
import qualified Data.Semigroup as SG
import qualified Data.Set.Internal as S
import qualified Data.Set.Lifted.Internal as SL
import qualified Prelude as P
data Map k v
= MapElement k (Map k v) (Map k v)
| MapValue v
| MapEmpty
deriving (Functor,Eq,Ord)
instance (Semigroup v, Ord k) => Semigroup (Map k v) where
(<>) = append
instance (Semigroup v, Ord k) => Monoid (Map k v) where
mempty = empty
mappend = (SG.<>)
instance (Show k, Show v) => Show (Map k v) where
showsPrec p xs = showParen (p > 10) $
showString "fromList " . shows (P.map (first SL.Set) (toList xs))
toList :: (Contiguous arr, Element arr k)
=> Map k v
-> [(Set arr k,v)]
toList = foldrWithKey (\k v xs -> (k,v) : xs) []
fromList :: (Contiguous arr, Element arr k, Ord k)
=> [(Set arr k,v)]
-> Map k v
fromList = fmap getFirst . concat . P.map (\(s,v) -> singleton s (First v))
concat :: (Ord k,Semigroup v)
=> [Map k v]
-> Map k v
concat = F.foldl' (\r x -> append r x) empty
foldrWithKey :: (Contiguous arr, Element arr k)
=> (Set arr k -> v -> b -> b)
-> b
-> Map k v
-> b
foldrWithKey f b0 = go 0 [] b0 where
go !_ !_ b MapEmpty = b
go !n !xs b (MapValue v) = f (Set (A.unsafeFromListReverseN n xs)) v b
go !n !xs b (MapElement k present absent) =
go (n + 1) (k : xs) (go n xs b absent) present
empty :: Map k v
empty = MapEmpty
singleton :: (Contiguous arr, Element arr k)
=> Set arr k
-> v
-> Map k v
singleton s v = S.foldr (\k m -> MapElement k m empty) (MapValue v) s
antisingleton :: (Contiguous arr, Element arr k)
=> Set arr k
-> v
-> Map k v
antisingleton s v = S.foldr (\k m -> MapElement k empty m) (MapValue v) s
fromPolarities :: (Contiguous karr, Element karr k)
=> M.Map karr Array k Bool
-> v
-> Map k v
fromPolarities s v = M.foldrWithKey
(\k p m -> MapElement k (bool empty m p) (bool m empty p))
(MapValue v) s
lookup :: forall arr k v. (Ord k, Contiguous arr, Element arr k)
=> Set arr k
-> Map k v
-> Maybe v
{-# INLINABLE lookup #-}
lookup (Set arr) = go 0 where
!sz = A.size arr
go :: Int -> Map k v -> Maybe v
go !_ MapEmpty = Nothing
go !_ (MapValue v) = Just v
go !ix (MapElement element present absent) =
choose ix element present absent
choose :: Int -> k -> Map k v -> Map k v -> Maybe v
choose !ix element present absent = if ix < sz
then
let (# k #) = A.index# arr ix
in case compare k element of
EQ -> go (ix + 1) present
LT -> choose (ix + 1) element present absent
GT -> go ix absent
else followAbsent absent
followAbsent :: Map k v -> Maybe v
followAbsent (MapElement _ _ x) = followAbsent x
followAbsent (MapValue v) = Just v
followAbsent MapEmpty = Nothing
augment :: Eq k => (v -> v) -> v -> Map k v -> Map k v
augment _ v MapEmpty = MapValue v
augment f _ (MapValue x) = MapValue (f x)
augment f v (MapElement k present absent) =
let present' = augment f v present
absent' = augment f v absent
in MapElement k present' absent'
append :: forall k v. (Semigroup v, Ord k) => Map k v -> Map k v -> Map k v
append = go where
go :: Map k v -> Map k v -> Map k v
go MapEmpty m = m
go (MapValue x) (MapValue y) = MapValue (x <> y)
go (MapValue x) MapEmpty = MapValue x
go (MapValue x) (MapElement elemY presentY absentY) =
augment (x SG.<>) x (MapElement elemY presentY absentY)
go (MapElement elemX presentX absentX) MapEmpty =
MapElement elemX presentX absentX
go (MapElement elemX presentX absentX) (MapValue y) =
augment (SG.<> y) y (MapElement elemX presentX absentX)
go (MapElement elemX presentX absentX) (MapElement elemY presentY absentY) = case compare elemX elemY of
EQ ->
let present = go presentX presentY
absent = go absentX absentY
in MapElement elemX present absent
LT ->
let present = go presentX (MapElement elemY presentY absentY)
absent = go absentX (MapElement elemY presentY absentY)
in MapElement elemX present absent
GT ->
let present = go (MapElement elemX presentX absentX) presentY
absent = go (MapElement elemX presentX absentX) absentY
in MapElement elemY present absent